IV. QUANTUM EFFECTS
A. Quantum Zeno and anti-Zeno effects
[Misra-Sudarshan 77],
[Chiu-Sudarshan-Misra 77],
[Peres 80 a, b],
[Joos 84],
[Home-Whitaker 86, 92 b, 93],
[Home-Whitaker 87] (QZE
in the many-worlds interpretation),
[Bollinger-Itano-Heinzen-Wineland 89],
[Itano-Heinzen-Bollinger-Wineland 90],
[Peres-Ron 90] (incomplete collapse and
partial QZE),
[Petrosky-Tasaki-Prigogine 90],
[Inagaki-Namiki-Tajiri 92] (possible observation of the
QZE by means of neutron spin-flipping),
[Whitaker 93],
[Pascazio-Namiki-Badurek-Rauch 93] (QZE with
neutron spin),
[Agarwal-Tewori 94] (an optical realization),
[Fearn-Lamb 95],
[Presilla-Onofrio-Tambini 96],
[Kaulakys-Gontis 97] (quantum anti-Zeno effect),
[Beige-Hegerfeldt 96, 97],
[Beige-Hegerfeldt-Sondermann 97],
[Alter-Yamamoto 97] (QZE and the impossibility of
determining the quantum state of a single system),
[Kitano 97], [Schulman 98 b],
[Home-Whitaker 98],
[Whitaker 98 b] (interaction-free measurement and the QZE),
[Gontis-Kaulakys 98],
[Pati-Lawande 98],
[Álvarez Estrada-Sánchez Gómez 98] (QZE in relativistic quantum
field theory),
[Facchi-Pascazio 98]
(quantum Zeno time of an excited state of the hydrogen atom),
[Wawer-Keller-Liebman-Mahler 98] (QZE in composite systems),
[Mensky 99],
[Lewenstein-Rzazewski 99] (quantum anti-Zeno effect),
[Balachandran-Roy 00, 01] (quantum anti-Zeno paradox),
[Egusquiza-Muga 00] (consistent histories and QZE),
[Facchi-Gorini-Marmo-(+2) 00],
[Kofman-Kurizki-Opatrný 00] (QZE and anti-Zeno effects
for photon polarization dephasing),
[Horodecki 01 a],
[Wallace 01 a] (computer model for the QZE),
[Kofman-Kurizki 01],
[Militello-Messina-Napoli 01] (QZE in trapped ions),
[Facchi-Nakazato-Pascazio 01],
[Facchi-Pascazio 01] (QZE: Pulsed versus
continuous measurement),
[Fischer-Gutiérrez Medina-Raizen 01],
[Wunderlich-Balzer-Toschek 01],
[Facchi 02].
B. Reversible measurements, delayed choice and quantum erasure
[Jaynes 80],
[Wickes-Alley-Jakubowicz 81] (DC experiment),
[Scully-Drühl 82],
[Hillery-Scully 83],
[Miller-Wheeler 84] (DC),
[Scully-Englert-Schwinger 89],
[Ou-Wang-Zou-Mandel 90],
[Scully-Englert-Walther 91] (QE, see also
[Scully-Zubairy 97], Chap. 20),
[Zou-Wang-Mandel 91],
[Zajonc-Wang-Zou-Mandel 91] (QE),
[Kwiat-Steinberg-Chiao 92] (observation of QE),
[Ueda-Kitagawa 92] (example of a "logically reversible" measurement),
[Royer 94] (reversible measurement on a spin-[1/2] particle),
[Englert-Scully-Walther 94] (QE, review),
[Kwiat-Steinberg-Chiao 94] (three QEs),
[Ingraham 94] (criticism in
[Aharonov-Popescu-Vaidman 95]),
[Herzog-Kwiat-Weinfurter-Zeilinger 95] (complementarity and QE),
[Watson 95],
[Cereceda 96 a] (QE, review),
[Gerry 96 a],
[Mohrhoff 96] (the Englert-Scully-Walther's experiment is a
`DC' experiment only in a semantic sense),
[Griffiths 98 b] (DC experiments in the consistent
histories interpretation),
[Scully-Walther 98] (an operational analysis of QE and DC),
[Dürr-Nonn-Rempe 98 a, b] (origin of quantum-mechanical
complementarity probed by a "which way" experiment in an atom interferometer,
see also [Knight 98], [Paul 98]),
[Bjørk-Karlsson 98] (complementarity and QE in welcher Weg experiments),
[Hackenbroich-Rosenow-Weidenmüller 98] (a mesoscopic QE),
[Mohan-Luo-Kröll-Mair 98] (delayed single-photon self-interference),
[Luis-Sánchez Soto 98 b] (quantum phase difference is used to analyze
which-path detectors in which the loss of interference predicted by
complementarity cannot be attributed to a momentum transfer),
[Kwiat-Schwindt-Englert 99] (what does a quantum eraser really erase?),
[Englert-Scully-Walther 99] (QE in double-slit interferometers
with which-way detectors, see [Mohrhoff 99]),
[Garisto-Hardy 99] (entanglement of projection and a new class of QE),
[Abranyos-Jakob-Bergou 99]
(QE and the decoherence time of a measurement process),
[Schwindt-Kwiat-Englert 99] (nonerasing QE),
[Kim-Yu-Kulik-(+2) 00] (a DC QE),
[Tsegaye-Björk-Atatüre-(+3) 00]
(complementarity and QE with entangled-photon states),
[Souto Ribeiro-Padua-Monken 00] (QE by transverse indistinguishability),
[Elitzur-Dolev 01] (nonlocal effects of partial measurements and QE),
[Walborn-Terra Cunha-Pádua-Monken 02] (a double-slit QE),
[Kim-Ko-Kim 03 b] (QE experiment with frequency-entangled photon pairs).
C. Quantum nondemolition measurements
[Braginsky-Vorontsov 74],
[Braginsky-Vorontsov-Khalili 77],
[Thorne-Drever-Caves-(+2) 78],
[Unruh 78, 79],
[Caves-Thorne-Drever-(+2) 80],
[Braginsky-Vorontsov-Thorne 80],
[Sanders-Milburn 89] (complementarity
in a NDM),
[Holland-Walls-Zller 91] (NDM of photon number by atomic-beam deflection),
[Braginsky-Khalili 92] (book),
[Werner-Milburn 93] (eavesdropping using NDM),
[Braginsky-Khalili 96] (Rev. Mod. Phys.),
[Friberg 97] (Science),
[Ozawa 98 a] (nondemolition monitoring of universal quantum computers),
[Karlsson-Bjørk-Fosberg 98]
(interaction-free and NDM),
[Fortunato-Tombesi-Schleich 98] (non-demolition endoscopic tomography),
[Grangier-Levenson-Poizat 98]
(quantum NDM in optics, review article in Nature),
[Ban 98]
(information-theoretical properties of a sequence of NDM),
[Buchler-Lam-Ralph 99] (NDM with
an electro-optic feed-forward amplifier),
[Watson 99 b].
D. "Interaction-free" measurements
[Reninger 60] (is the first one to speak of "negative result measurements")
[Dicke 81, 86] (investigates the change in the wave function of an atom due
to the non-scattering of a photon),
[Hardy 92 c] (comments:
[Pagonis 92],
[Hardy 92 e]),
[Elitzur-Vaidman 93 a, b],
[Vaidman 94 b, c, 96 e, 00 b, 01 a, c],
[Bennett 94],
[Kwiat-Weinfurter-Herzog-(+2) 95 a, b],
[Penrose 95] (Secs. 5. 2, 5. 9),
[Krenn-Summhammer-Svozil 96],
[Kwiat-Weinfurter-Zeilinger 96 a] (review),
[Kwiat-Weinfurter-Zeilinger 96 b],
[Paul-Pavicić 96, 97, 98],
[Pavicić 96 a],
[du Marchie van Voorthuysen 96],
[Karlsson-Bjørk-Fosberg 97, 98] (investigates the transition from IFM
of classical objects like bombs to IFM of quantum objects; in that case they are
called "non-demolition measurements"),
[Hafner-Summhammer 97] (experiment with neutron interferometry),
[Luis-Sánchez Soto 98 b, 99],
[Kwiat 98],
[White-Mitchell-Nairz-Kwiat 98] (systems that allow us to obtain
images from photosensible objects, obtained by absorbing or scattering
fewer photons than were classically expected),
[Geszti 98],
[Noh-Hong 98],
[Whitaker 98 b] (IFM and the quantum Zeno effect),
[White-Kwiat-James 99],
[Mirell-Mirell 99] (IFM
from continuous wave multi-beam interference),
[Krenn-Summhammer-Svozil 00]
(interferometric information gain versus IFM),
[Simon-Platzman 00] (fundamental limit on IFM),
[Potting-Lee-Schmitt-(+3) 00]
(coherence and IFM),
[Mitchison-Jozsa 01] (IFM can be regarded as counterfactual
computations),
[Horodecki 01 a] (interaction-free interaction),
[Mitchison-Massar 01]
(IF discrimination between semi-transparent
objects),
[Sánchez Soto 00] (IFM and the quantum Zeno effect, review),
[Kent-Wallace 01] (quantum interrogation and the safer X-ray),
[Zhou-Zhou-Feldman-Guo 01 a, b] ("nondistortion quantum
interrogation"),
[Zhou-Zhou-Guo-Feldman 01]
(high efficiency nondistortion quantum interrogation
of atoms in quantum superpositions),
[Methot-Wicker 01] (IFM applied to quantum computation:
A new CNOT gate),
[DeWeerd 02].
E. Other applications of entanglement
[Wineland-Bollinger-Itano-(+2) 92]
(reducing quantum noise in spectroscopy using correlated ions),
[Boto-Kok-Abrams-(+3) 00]
(quantum interferometric optical lithography: Exploiting entanglement
to beat the diffraction limit),
[Kok-Boto-Abrams-(+3) 01] (quantum lithography:
Using entanglement to beat the diffraction limit),
[Bjørk-Sánchez Soto-Søderholm 01]
(entangled-state lithography: Tailoring any pattern with a single state),
[D'Ariano-Lo Presti-Paris 01]
(using entanglement improves the precision of quantum measurements).