IV.  QUANTUM EFFECTS

A.  Quantum Zeno and anti-Zeno effects

[Misra-Sudarshan 77], [Chiu-Sudarshan-Misra 77], [Peres 80 a, b], [Joos 84], [Home-Whitaker 86, 92 b, 93], [Home-Whitaker 87] (QZE in the many-worlds interpretation), [Bollinger-Itano-Heinzen-Wineland 89], [Itano-Heinzen-Bollinger-Wineland 90], [Peres-Ron 90] (incomplete collapse and partial QZE), [Petrosky-Tasaki-Prigogine 90], [Inagaki-Namiki-Tajiri 92] (possible observation of the QZE by means of neutron spin-flipping), [Whitaker 93], [Pascazio-Namiki-Badurek-Rauch 93] (QZE with neutron spin), [Agarwal-Tewori 94] (an optical realization), [Fearn-Lamb 95], [Presilla-Onofrio-Tambini 96], [Kaulakys-Gontis 97] (quantum anti-Zeno effect), [Beige-Hegerfeldt 96, 97], [Beige-Hegerfeldt-Sondermann 97], [Alter-Yamamoto 97] (QZE and the impossibility of determining the quantum state of a single system), [Kitano 97], [Schulman 98 b], [Home-Whitaker 98], [Whitaker 98 b] (interaction-free measurement and the QZE), [Gontis-Kaulakys 98], [Pati-Lawande 98], [Álvarez Estrada-Sánchez Gómez 98] (QZE in relativistic quantum field theory), [Facchi-Pascazio 98] (quantum Zeno time of an excited state of the hydrogen atom), [Wawer-Keller-Liebman-Mahler 98] (QZE in composite systems), [Mensky 99], [Lewenstein-Rzazewski 99] (quantum anti-Zeno effect), [Balachandran-Roy 00, 01] (quantum anti-Zeno paradox), [Egusquiza-Muga 00] (consistent histories and QZE), [Facchi-Gorini-Marmo-(+2) 00], [Kofman-Kurizki-Opatrný 00] (QZE and anti-Zeno effects for photon polarization dephasing), [Horodecki 01 a], [Wallace 01 a] (computer model for the QZE), [Kofman-Kurizki 01], [Militello-Messina-Napoli 01] (QZE in trapped ions), [Facchi-Nakazato-Pascazio 01], [Facchi-Pascazio 01] (QZE: Pulsed versus continuous measurement), [Fischer-Gutiérrez Medina-Raizen 01], [Wunderlich-Balzer-Toschek 01], [Facchi 02].

B.  Reversible measurements, delayed choice and quantum erasure

[Jaynes 80], [Wickes-Alley-Jakubowicz 81] (DC experiment), [Scully-Drühl 82], [Hillery-Scully 83], [Miller-Wheeler 84] (DC), [Scully-Englert-Schwinger 89], [Ou-Wang-Zou-Mandel 90], [Scully-Englert-Walther 91] (QE, see also [Scully-Zubairy 97], Chap. 20), [Zou-Wang-Mandel 91], [Zajonc-Wang-Zou-Mandel 91] (QE), [Kwiat-Steinberg-Chiao 92] (observation of QE), [Ueda-Kitagawa 92] (example of a "logically reversible" measurement), [Royer 94] (reversible measurement on a spin-[1/2] particle), [Englert-Scully-Walther 94] (QE, review), [Kwiat-Steinberg-Chiao 94] (three QEs), [Ingraham 94] (criticism in [Aharonov-Popescu-Vaidman 95]), [Herzog-Kwiat-Weinfurter-Zeilinger 95] (complementarity and QE), [Watson 95], [Cereceda 96 a] (QE, review), [Gerry 96 a], [Mohrhoff 96] (the Englert-Scully-Walther's experiment is a `DC' experiment only in a semantic sense), [Griffiths 98 b] (DC experiments in the consistent histories interpretation), [Scully-Walther 98] (an operational analysis of QE and DC), [Dürr-Nonn-Rempe 98 a, b] (origin of quantum-mechanical complementarity probed by a "which way" experiment in an atom interferometer, see also [Knight 98], [Paul 98]), [Bjørk-Karlsson 98] (complementarity and QE in welcher Weg experiments), [Hackenbroich-Rosenow-Weidenmüller 98] (a mesoscopic QE), [Mohan-Luo-Kröll-Mair 98] (delayed single-photon self-interference), [Luis-Sánchez Soto 98 b] (quantum phase difference is used to analyze which-path detectors in which the loss of interference predicted by complementarity cannot be attributed to a momentum transfer), [Kwiat-Schwindt-Englert 99] (what does a quantum eraser really erase?), [Englert-Scully-Walther 99] (QE in double-slit interferometers with which-way detectors, see [Mohrhoff 99]), [Garisto-Hardy 99] (entanglement of projection and a new class of QE), [Abranyos-Jakob-Bergou 99] (QE and the decoherence time of a measurement process), [Schwindt-Kwiat-Englert 99] (nonerasing QE), [Kim-Yu-Kulik-(+2) 00] (a DC QE), [Tsegaye-Björk-Atatüre-(+3) 00] (complementarity and QE with entangled-photon states), [Souto Ribeiro-Padua-Monken 00] (QE by transverse indistinguishability), [Elitzur-Dolev 01] (nonlocal effects of partial measurements and QE), [Walborn-Terra Cunha-Pádua-Monken 02] (a double-slit QE), [Kim-Ko-Kim 03 b] (QE experiment with frequency-entangled photon pairs).

C.  Quantum nondemolition measurements

[Braginsky-Vorontsov 74], [Braginsky-Vorontsov-Khalili 77], [Thorne-Drever-Caves-(+2) 78], [Unruh 78, 79], [Caves-Thorne-Drever-(+2) 80], [Braginsky-Vorontsov-Thorne 80], [Sanders-Milburn 89] (complementarity in a NDM), [Holland-Walls-Zller 91] (NDM of photon number by atomic-beam deflection), [Braginsky-Khalili 92] (book), [Werner-Milburn 93] (eavesdropping using NDM), [Braginsky-Khalili 96] (Rev. Mod. Phys.), [Friberg 97] (Science), [Ozawa 98 a] (nondemolition monitoring of universal quantum computers), [Karlsson-Bjørk-Fosberg 98] (interaction-free and NDM), [Fortunato-Tombesi-Schleich 98] (non-demolition endoscopic tomography), [Grangier-Levenson-Poizat 98] (quantum NDM in optics, review article in Nature), [Ban 98] (information-theoretical properties of a sequence of NDM), [Buchler-Lam-Ralph 99] (NDM with an electro-optic feed-forward amplifier), [Watson 99 b].

D.  "Interaction-free" measurements

[Reninger 60] (is the first one to speak of "negative result measurements") [Dicke 81, 86] (investigates the change in the wave function of an atom due to the non-scattering of a photon), [Hardy 92 c] (comments: [Pagonis 92], [Hardy 92 e]), [Elitzur-Vaidman 93 a, b], [Vaidman 94 b, c, 96 e, 00 b, 01 a, c], [Bennett 94], [Kwiat-Weinfurter-Herzog-(+2) 95 a, b], [Penrose 95] (Secs. 5. 2, 5. 9), [Krenn-Summhammer-Svozil 96], [Kwiat-Weinfurter-Zeilinger 96 a] (review), [Kwiat-Weinfurter-Zeilinger 96 b], [Paul-Pavicić 96, 97, 98], [Pavicić 96 a], [du Marchie van Voorthuysen 96], [Karlsson-Bjørk-Fosberg 97, 98] (investigates the transition from IFM of classical objects like bombs to IFM of quantum objects; in that case they are called "non-demolition measurements"), [Hafner-Summhammer 97] (experiment with neutron interferometry), [Luis-Sánchez Soto 98 b, 99], [Kwiat 98], [White-Mitchell-Nairz-Kwiat 98] (systems that allow us to obtain images from photosensible objects, obtained by absorbing or scattering fewer photons than were classically expected), [Geszti 98], [Noh-Hong 98], [Whitaker 98 b] (IFM and the quantum Zeno effect), [White-Kwiat-James 99], [Mirell-Mirell 99] (IFM from continuous wave multi-beam interference), [Krenn-Summhammer-Svozil 00] (interferometric information gain versus IFM), [Simon-Platzman 00] (fundamental limit on IFM), [Potting-Lee-Schmitt-(+3) 00] (coherence and IFM), [Mitchison-Jozsa 01] (IFM can be regarded as counterfactual computations), [Horodecki 01 a] (interaction-free interaction), [Mitchison-Massar 01] (IF discrimination between semi-transparent objects), [Sánchez Soto 00] (IFM and the quantum Zeno effect, review), [Kent-Wallace 01] (quantum interrogation and the safer X-ray), [Zhou-Zhou-Feldman-Guo 01 a, b] ("nondistortion quantum interrogation"), [Zhou-Zhou-Guo-Feldman 01] (high efficiency nondistortion quantum interrogation of atoms in quantum superpositions), [Methot-Wicker 01] (IFM applied to quantum computation: A new CNOT gate), [DeWeerd 02].

E.  Other applications of entanglement

[Wineland-Bollinger-Itano-(+2) 92] (reducing quantum noise in spectroscopy using correlated ions), [Boto-Kok-Abrams-(+3) 00] (quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit), [Kok-Boto-Abrams-(+3) 01] (quantum lithography: Using entanglement to beat the diffraction limit), [Bjørk-Sánchez Soto-Søderholm 01] (entangled-state lithography: Tailoring any pattern with a single state), [D'Ariano-Lo Presti-Paris 01] (using entanglement improves the precision of quantum measurements).