8
Идея ненаблюдаемости, неописуемости, а потому и непознаваемости квантового мира рождает в сознании квантовых теоретиков чувство неизмеримой гордости от возможности прикосновения к вечной вселенской тайне, чье мрачное величие неизбежно проецируется и на личности самих слуг и охранников этой тайны. Эта гордость звучит, например, в словах Л. Ландау, говорившего о том, что «в теоретической физике нам удается объяснить то, что мы не можем себе представить». Эта же гордость от прикосновения к не разрешимой тайне бытия звучит и в словах Р. Фейнмана, которыми он завершает интерпретацию двухщелевого квантового эксперимента: «Один философ сказал: Для самого существования науки совершенно необходимо, чтобы в одних и тех же условиях всегда получались одни и те же результаты. Так вот этого не получается. Вы сможете точно воспроизвести все условия, и все-таки вы не сможете точно сказать, в каком отверстии вы увидите электрон. Тем не менее, несмотря на это, наука жива, хотя в одних и тех же условиях не всегда получаются одни и те же результаты» [-\-] «Поэтому в действительности для самого существования науки совершенно необходимо вот что – светлые умы, не требующие от природы, чтобы она удовлетворяла каким-то заранее придуманным условиям, как того требует наш философ». Однако по поводу этого гордого квантового агностицизма существует и иная точка зрения. Она принадлежит А.Эйнштейну, предложившему гносеологический алгоритм, определяющий стратегический путь решения научных проблем. Этот алгоритм звучит следующим образом: «Для того, чтобы решить проблему, нужно подняться на более высокий уровень сознания, нежели тот, на котором эта проблема была сформулирована». Логика этого алгоритма по своей сути повторяет логику событий двухщелевого квантового эксперимента, в котором разделенная реальность, представляющая сумму собственных частей, вдруг, словно бы, поднимаясь на какой-то иной, более высший уровень бытия, превращается в целое, превосходящее эту сумму. Чтобы понять характер этого превращения, человеческое сознание, по мнению Эйнштейна должно в себе самом проделать этот же путь. Это значит, что все научные проблемы, с которыми сталкивается человек, возникают на том уровне его сознания, в котором реальность представляется ему лишь банальной суммой ее частей, подобно тому, как в математике 2 + 2 всегда равняется 4. В этом описании не может быть никакой интерференции, как не может быть ее и при банальном сложении частей реальности, которые в квантовой информатике именуются ее альтернативными состояниями. Однако процесс превращения суммы частей реальности в превышающий эту сумму интерферирующий образ становится для человека понятным и очевидным лишь тогда, когда в своем сознании он также поднимается на иной, более высший уровень своего мировосприятия, на котором этот интерферирующий образ и обнаруживается. Впрочем, этот перевод исследуемой физической реальности на новый, более высокий уровень миропонимания, осуществил не Эйнштейн, но Н. Бор, на определенном этапе свой научной деятельности вдруг увидевший квантовый мир совсем в ином свете, в котором он начал ассоциироваться у него с миром жизни (Н. Бор «Свет и жизнь», «Квантовая физика и биология» и т.д.). Так же и Э. Шредингер, интуитивно чувствуя глобальность законов квантовой механики, пытался обнаружить их и в мире жизни (Э. Шредингер «Что такое жизнь с точки зрения физики»), чтобы используя этот более высокий бытийный уровень, яснее понять, что же происходит в этом странном квантовом мире. На этот же иной, более высший уровень бытия пытался поднять квантовый мир и сам Р. Фейнман, предложивший идею квантового компьютера, который помимо своего узкого утилитарного предназначения, связанного лишь с ускорением вычислительных процессов, очень быстро породил множество гуманитарных ассоциаций, далеко выходящих за границы физики, и связанных с надеждами человека с его помощью создать действующую модель своего собственного сознания, именуемую «квантовым сознанием». Эти упования на квантовой компьютер, который должен выполнить глобальную миссию объединения физики и психики, спровоцированы еще и тем, что в его деятельности используется не однозначный язык математики, в котором 2 +2 всегда равно четырем, но многозначный и эфемерный язык кубитов, сложение которых рождает вовсе не их банальную арифметическую сумму, но что-то совсем иное, какую-то новую реальность, именуемую квантовой суперпозицией, которая по своей сути и является интерференцией, превосходящей сумму составляющих ее частей. Крайняя важность этого, используемого в квантовой информатике нового, двойственного языка описания реальности, определяется тем, что этот язык чрезвычайно похож на обыденный язык человеческого общения, в котором череда первичных элементов информации - букв в процессе их использования так же рождает не их банальную арифметическую сумму, но иную реальность – слова, несущие в себе образы и смыслы, которые располагаются в иной области бытия, чем формирующие их буквы, подобно тому, как квантовая суперпозиция или квантовая интерференция располагаются в иной области бытия, чем формирующие их кубиты. При этом, связь букв с кубитами состоит в следующем. Кубиты не обладают собственным, автономным, самостоятельным бытием. Они рождены попыткой человека представить целое – квантовую систему в виде совокупности ее частей (альтернативных состояний), арифметическая сумма которых этого целого не образует, но всегда оказывается меньше ее. При этом, в каждом кубите, участвующем в описании квантовой системы, раскрывается не только один вариант связи ее альтернативных состояний, но подразумевается также связь всех возможных вариантов альтернативных состояний данной системы, находящейся в процессе постоянного динамического становления. Поэтому данная система, превосходящая сумму составляющих ее кубитов, может меняться лишь посредством их изменений, в то время, как ее собственная целостность остается неизменной. Эта целостность и образует феномен квантовой суперпозиции или интерференции. Поэтому извлеченный из этой целостной суперпозиции кубит, количественно отражающий лишь один вариант связи альтернативных состояний постоянно эволюционирующей системы, ничего не скажет об ее общем состоянии, находящимся в процессе динамического становления и требующего для своего описания всей суперпозиции (интерференции) в целом. Так же и буквы образующие слова, в которых раскрываются эстетические образы и смыслы, уже более не сводимые к самой банальной сумме букв, представляют собой уже совершенно иную, не количественную, не математическую, но эстетическую и семантическую реальность, принципиально отличную от суммы букв. При этом, именно семантика целостного слова придает значение присутствующим в нем буквам, которые вне этого слова, как и вообще вне каких-либо слов, никакого собственного смысла, значения а потому и бытия не имеют, как не имеют его и отдельно взятые кубиты, вынутые из суперпозиции, определяющей бытие эволюционирующей квантовой системы, чью динамику можно сравнить с артикулируемым словом, смысл и значение которого в процессе этой артикуляции и появляются. Единственное же возражение, возникающее при сравнении букв с кубитами состоит в том, что кубит – это двойственная единица информации, количественно отражающая связь альтернативных состояний целостной системы. Буква же, на первый взгляд, этой двойственностью не обладает. Однако, это не так. Двойственность букв, подобная двойственности кубитов, определяется их общим происхождением, связанным с разложением Целого, на составляющие его части, которые в своей сумме не образуют данного Целого. При этом, в человеческой культуре существуют две противоположные друг другу идеи происхождения букв в частности, и языка, в целом. Первая идея механистическая и наукообразная. Она состоит в том, что буквы – это случайно выбранные звуки, чья механистическая совокупность образует слова, значение которых так же выбрано случайно и впоследствии закреплено их постоянным повторением. Вторая идея, исторически гораздо древняя, чем первая. Она восходит к архаической религиозной мифологии, согласно которой появлению человеческого языка, состоящего из букв, предшествовала некая целостная динамика Вселенной, выраженная в определенной Тео и антропоморфной истории, впоследствии распавшейся на отдельные элементы – фразы, слова, буквы, которые стали использоваться людьми в качестве конструктора, позволяющего создать объединяющую их речевую коммуникацию. Поэтому человек мыслит и говорит не только в рамках этих образованных в результате распада глобальной исторической динамики Вселенной букв и слов, но и в рамках той целостной истории, которая в различных своих вариантах и модификациях формирует национальный менталитет, национальную культуру, национальную мифологию, а вместе с ними и сам национальный грамматический язык. Поэтому, если буквы появились в результате распада глобальной целостной системы - эволюционирующей Вселенной, динамика которой раскрывается, например, в библейской истории, впоследствии этими буквами и записанной, то естественно, что буквы, с одной стороны, оказываются единицами составляющими некую сумму – алфавит, но с другой стороны несут в себе характеристики всей той целостной Вселенной, из которой они произошли и которая в каждой из них обрела локальную проекцию своего нелокального бытия. Поэтому все они являются альтернативными состояниями этой Вселенной, образ которой собирается не неким их количеством, но сформированной из них осмысленной речью, содержание которой превосходит их арифметическую сумму. Оттого во всех древних языках буквы считались сакральными, как сакральными считались и сами, породившие их мифологические истории, в которых раскрывается динамика Вселенной. Поэтому буквы, являющиеся альтернативными частями некой целостной, прежде распавшейся семантической Вселенной, безусловно имеют двойственную природу, подобную двойственной природе кубитов. И тем не менее, буквы и кубиты в контексте их использования имеют одно очень важное отличие, которое состоит в том, что человек буквы, как элементы информации читает, а квантовый компьютер свою кубитную информацию считает. При этом, после прочтения, информационная суперпозиция (интерференция), раскрывающаяся в виде обладающей эстетикой и семантикой литературной истории, составленной из букв, слов и предложений, остается в человеческом сознании в своем полном, не сколлапсированном виде. Так же остается в человеческом сознании в своем полном, несколапсированном виде, составленное из подобных буквам нот – звуков, музыкального произведение. После же компьютерного исчисления кубитов, информационная суперпозиция должна исчезнуть, превратясь в банальное число, что говорит о неадекватности и недоработанности самой теории квантовой информатики.
9
А. Эйнштейн и Н. Бор в процессе осмысления основ физической реальности и поисков аналогий между миром физики и миром мышления и жизни, всегда подчеркивали, что мир жизни и мир человеческого сознания являются гораздо более сложными и многомерными, чем весьма «простой» физический мир. По этому поводу существует известное выражение Эйнштейна о том, что «Решение физических проблем — это детская игра по сравнению с научно-психологическими исследованиями детской игры». Так же и Н. Бор говорил о чрезвычайной сложности феномена жизни, которую следует учитывать в попытках создания ее физических описаний. Поэтому с одной стороны он в своих работах пытался свести биологию к физике, чувствуя их глубинную общую основу: «Само существование жизни должно рассматриваться в биологии, как элементарный факт, подобный тому, как в атомной физике существование кванта действия следует принимать за основной факт, который нельзя вывести из обычной механической физики»». (Н. Бор Свет и жизнь 1932). Однако с другой стороны Бор всегда настаивал на том, что биология гораздо сложнее физики и поэтому восхождение физики к биологии представляет собой восхождение науки на новый, иной, более высокий уровень понимания человеком глобального бытия: «Мы должны, однако, помнить, что в атомной физике и в биологии мы имеем дело с существенно различными проблемами. Если в первой области мы интересуемся прежде всего поведением материи в ее самых простых формах, то в биологии мы занимаемся материальными системами, сложность которых имеет фундаментальный характер» (Н. Бор «Свет и жизнь»). Эта, по выражению Бора, «фундаментальная сложность» мира жизни по отношению к миру физики определяется интерференционными квантовыми процессами физической реальности, переводящими эту реальность на более высокий уровень бытия, превосходящий сумму составляющих его частей физической реальности. Об этом подъеме мира жизни над миром физики говорил и академик Гинзбург: “Мы полагаем в настоящее время, что знаем, из чего устроено все живое — из электронов, атомов и молекул. Знаем строение атомов и молекул, а также управляющие ими и излучением законы. Поэтому естественна гипотеза о редукции — возможности все живое объяснить на основе физики, уже известной физики. Конкретно, основными являются вопросы о происхождении жизни и появлении сознания (мышления). Образование в условиях, царивших на Земле несколько миллиардов лет назад, сложных органических молекул уже прослежено, понято и смоделировано. Казалось бы, переход от таких молекул и их комплексов к простейшим организмам, к их воспроизводству можно себе представить. Но здесь имеется какой-то скачок, фазовый переход. Проблема не решена, и я склонен думать, будет безоговорочно решена только после создания “жизни в пробирке”. (УФН 169 419 (1999). С этой же восходящей динамикой, имеющей в своей основе феномен интерференции, связан и процесс усложнения самого физического мира, в котором происходит восхождение от элементарных частиц к атомным ядрам, атомам, молекулам, которые несмотря на свой сложный состав, тем не менее, обладают характеристиками целостных систем, то есть квантовых суперпозиций, в которых словно бы нет никаких частей. Н. Бор пишет по этому поводу: «Действительно, мы должны сознаться, что у нас нет никаких оправданий даже для предположений о существовании внутри ядра частиц, освобождаемых при разрушении ядра» (Н. Бор «Захват нейтрона и строение ядра»). Что же касается работ Фейнмана и его последователей, в которых были сформулированы основы квантовой информатики, то в этих работах происходит не восхождение физики к законам жизни и мышления, но, наоборот, осуществляется попытка низвести мышление до «простых» законов физики, лишающих информацию эстетики и семантики, которыми она обладает для воспринимающего ее человека, и которые мгновенно исчезают в примитивном квантовом компьютере, не способным сформировать ее интерферирующий образ, превосходящий сумму составляющих ее информационных единиц, но способный лишь считать эти единицы, получив в результате их неинтерферирующую сумму. Поэтому то, что получилось в результате долгой, протяженностью в несколько десятилетий работы физиков над фейнмановским квантовым компьютером, напоминает иллюстрацию самого Р. Фейнмана, которую он привел во время одного из своих публичных выступлений, посвященного определению сущности науки: «У тихоокеанских островитян есть религия самолетопоклонников. Во время войны они видели, как приземляются самолёты, полные всяких хороших вещей, и они хотят, чтобы так было и теперь. Поэтому они устроили что-то вроде взлётно-посадочных полос, по сторонам их разложили костры, построили деревянную хижину, в которой сидит человек с деревяшками в форме наушников на голове и бамбуковыми палочками, торчащими как антенны – он диспетчер, – и они ждут, когда прилетят самолёты. Они делают все правильно. По форме все верно. Все выглядит так же, как и раньше, но все это не действует. Самолёты не садятся. Я называю упомянутые науки науками самолетопоклонников...» (Р. Фейнман «Вы, конечно, шутите мистер Фейнман») Так и сама квантовая информатика в ее сегодняшнем виде похожа на науку «самолетопоклонников», о которой не только поведал Р. Фейнман, но которую он сам и изобрел. 10
В завершении своей интерпретации двухщелевого квантового эксперимента, Р. Фейнман так и не говорит о том, откуда за экраном появляются лишние электроны, которые не излучались перед экраном. Однако, если использовать его логику описания происходящих в эксперименте событий, то появление лишних электронов объясняется следующим образом. Согласно вероятностному описанию квантовой реальности Р. Фейнмана, один и тот же электрон с определенной долей (амплитудой) вероятности пролетает и через первое, и через второе отверстие в экране, обретая, таким образом, две альтернативы своего целостного квантового бытия. При этом, интерференция, как событие квантового мира, согласно логике Р. Фейнмана определяется квадратом суммы его альтернатив. Это значит, что сложение амплитуд вероятности прохождения электрона через одно и через другое отверстие и возведение полученной суммы в квадрат и будет адекватным описанием интерференции, в процессе которой появляются новые электроны. Таким образом, проблема возникновения новых электронов, не излучавшихся перед экраном, но возникших в результате этой математической процедуры, оказывается решенной. Однако Р. Фейнман, тем не менее, ничего не говорит об этом решении, поскольку оно противоречит его общей идеологии описания квантового мира. Данное противоречие состоит в том, что процедура вычисления вероятности возникновения интерференции, завершающаяся появлением некоего числа, ведет к исчезновению интерференции, потому что квантовая интерференция представляет собой суперпозицию альтернатив целостной квантовой системы, которая числом быть не может. Также интерференция, как полная картина квантового мира, не может быть зафиксирована каким-либо классическим прибором, который неизбежно должен сколлапсировать ее до состояния суммы ее разделенных альтернатив. Таким образом, и при вычислении возможности появления нового электрона, свидетельствующего о возникновении интерференции, и при его обнаружении датчиком, этот электрон вместе с интерференцией должен немедленно исчезнуть, поскольку он представляет не себя, но являет в собственном виде интерферирующий образ вероятностного квантового мира. Однако, появившиеся за экраном новые электроны, судя по всему, не исчезают. Поэтому, гораздо более правдоподобным объяснением появления лишних электронов за экраном, является объяснение, связанное с волновой интерпретацией двухщелевого эксперимента, вменяющей электрону реальные волновые характеристики, которые приписывались ему в ранних работах де Бройля и учитывались в ранней модели атома Бора, в которой на атомной электронной орбите укладывалось целое количество пиков и впадин электронных волн. Эти волны, формирующие движение электрона в пространстве, можно наблюдать при бомбардировке электронами фотопластины, на которой их разрозненные следы формируют светлые и темные полосы, раскрывающие волновую траекторию их движения. Данные электронные волны в процессе двухщелевого эксперимента, проходя через два открытых отверстия в экране, за экраном многократно накладываются друг на друга и формируют волновую интерференционную картину, представляющую собой сложный лабиринт, состоящий из волн, количество которых за экраном превосходит их количество перед экраном. Что же касается появления при интерференции новых дискретных, фиксируемых датчиком, корпускулярных электронов, то оно связано с тем, что согласно принципу целостности квантовых систем, присущая электрону синусоидальная электронная волна сопряжена с его дискретным, «вращательным», спиновым движением, формирующим текучую, локальную, корпускулярную форму электрона. Поэтому увеличение при интерференции количества электронных волн за экраном приводит к тому, что каждая вновь образующаяся электронная волна формирует свое собственное спиновое «вращение», участвующее в локальном формообразовании корпускулярного электрона, который фиксируется установленным за экраном датчиком. И поскольку спиновое «вращение» осуществляется одновременно с синусоидальной динамикой электронной волны, совершающей полный цикл своего амплитудного движения от нижней точки (впадины), до верхней точки (гребня), то спин электрона всегда имеет лишь два направления: либо вверх, либо вниз, так как спиновая динамика, формирующая угловой момент электрона зависит от амплитудной динамики синусоидальной волны, которая направлена либо на достижение пика (вверх), либо впадины (вниз). Таким образом, в процессе синусоидального движения электронной волны, сопряженного со спиновым вращением, происходит формирование электронной корпускулы, которая образуется на пике волны – ее гребне или впадине. Эта связь корпускулы с гребнем или впадиной волны присутствует и в вероятностной интерпретации квантовой динамики, согласно которой величина амплитуды волны отражает величину вероятности обнаружения корпускулы в данной точке пространства, соответственно, достигая максимума на ее гребне или впадине. Таким образом, между вероятностным и волновым описанием квантового дуализма электрона, одновременно, существует и определенная близость и принципиальное отличие. Это отличие состоит в том, что вероятностное описание, в отличии от волнового, предполагает, что у электрона всегда присутствуют и волновые, и корпускулярные характеристики, которые не могут периодически исчезать. Поэтому вероятностное описание не допускает так называемого коллапса волновой функции, когда электрон может пребывать либо в корпускулярном, либо в волновом состоянии, как он всегда фиксируется в эксперименте. Что же касается реалистического, волнового описания динамики электрона, то данное описание предполагает его существование либо в виде волны, либо в виде корпускулы, а его общую динамику данное описание позволяет рассматривать в виде специфической пульсации, в процессе которой электрон меняет корпускулярную и волновую формы своего бытия. Поэтому, когда в двухщелевом квантовом эксперименте из излучателя появляется корпускуялрный электрон, то к экрану с двумя отверстиями он может подлетать уже в виде волны, которая, пройдя через два отверстия и интерферируя сама с собой, формирует дополнительные гребени, синусоидальная динамика которых сопряженная с вращательной, спиновой динамикой, рождает новые корпускулярные электроны, которые из излучателя не вылетали. Эти реальные квантовые волны, сопряженные со спиновым движением элементарных частиц, организующим их корпускулярные формы, определяют нелокальность квантового мира, именуемую квантовым дальнодействием. Природа дальнодействия состоит в том, что две имеющие общее происхождение частицы, изначально связанные с одной и той же синусоидальной волной, при воздействии на одну из них, передают это изменение синусоидальной волне, меняющей состояние другой, связанной с первой частице. Синусоидальные волны, связанные с частицами, являются волнами постоянно движущегося эфира, идея которого существовала в физике до появления теории относительности Эйнштейна, затем была отвергнута Эйнштейном, однако впоследствии, уже в современной физике получила новое название – энергетический вакуум.
|