Квантовый Портал

Тематические разделы => Философия => Тема начата: Феникс от 14 Октября 2011, 15:31:53



Название: Комбинаторика
Отправлено: Феникс от 14 Октября 2011, 15:31:53
В общем поясните мне, сколько на самом деле.

Все поставленные тобой задачи - это задачи на комбинаторику.

"Раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из заданных объектов, называется комбинаторикой".

Комбинаторика, в своей практической части - очень маленькая и очень простая дисциплина. И очень полезная в жизни.

Все что нужно, я тебе сейчас расскажу.


Определения:

Размещением из n элементов по k называется упорядоченный набор из k элементов некоторого n-элементного множества.

Сочетанием из n по k называется набор k элементов, выбранных из данных n элементов. Наборы, отличающиеся только порядком следования элементов (но не составом), считаются одинаковыми, этим сочетания отличаются от размещений.

Перестановкой из n элементов (например чисел 1, 2,..., n) называется всякий упорядоченный набор из этих элементов. Перестановка также является размещением из n элементов по n.


Формулы:

Число размещений из n по k:

без повторений:     с повторениями:
n! / (n-k)!n^k

Число сочетаний из n по k:

без повторений:     с повторениями:
n! / ((n-k)! k!)(n+k-1)! / (k! (n-1)!)

Число перестановок из n:

без повторений:
n!


----------
Восклицательный знак обозначает операцию факториала.

(Формула для перестановок с повторениями тоже есть, но она слишком сложна для данной статьи).


Название: Re: Комбинаторика
Отправлено: Феникс от 14 Октября 2011, 15:33:35
Примеры решения задач.

Задача 1.

Имеется кодовый замок с десятью стандарными цифрами. Известно, что открывающее его кодовое слово состоит из трех цифр; порядок имеет значение; одинаковые цифры возможны. Сколько всего вариантов открывающего слова может быть?

Ответ: по формуле размещений с повторениями, n=10, k=3:

10^3=1000


Задача 2.

Такой же замок что и в задаче один, но не допускающий повтора цифр в кодовом слове. Порядок все еще имеет значение. Сколько вариантов?

Ответ: по формуле размещений без повторений, n=10, k=3:

10! / (10-3)! = 720


Задача 3.

Такой же замок что и раньше; цифры в кодовом слове не повторяются; порядок не имеет значения (распространенный случай механического кодового замка). Сколько вариантов кодового слова?

Ответ: по формуле сочетаний без повторений, n=10, k=3:

10! / ((10-3)! 3!) = 120


Задача 4.

И-Цзин. Всего два варианта черты (ян и инь), всего шесть черт. Порядок имеет значение; повторы возможны. Сколько вариантов?

Ответ: по формуле размещений с повторениями, n=2, k=6:

2^6 = 64


Задача 5.

Вариация на тему И-Цзин. Всего четыре варианта черты (ян старый, ян молодой, инь старая, инь молодая); всего шесть черт. Порядок имеет значение; повторы возможны. Сколько вариантов?

Ответ: по формуле размещений с повторениями, n=4, k=6:

4^6 = 4096


Название: Re: Комбинаторика
Отправлено: werdy от 14 Октября 2011, 16:34:27
Спасибо, я на самом деле просто все это успешно забыл.  ;D
все предельно ясно.
А то бывало в диспутах о и-цзин я пробовал сказать, что вариантов на самом деле намного больше, но не получалось. А теперь ссылку им дам пуская сами вникают, а потому что технология!

То есть я это так понимаю, имеются 64 чистых состояния и их смешанные, проявленные в нашей реальности события, вот они и требуют при гадании второй гексограммы, то есть последующие проявление созревшей (перезревшей) уже ситуации.

Но как наглядно проявилось неумение заглянуть за пределы привычного круга состояний.  ;D И решить задачку средней школы.


Название: Re: Комбинаторика
Отправлено: Феникс от 14 Октября 2011, 17:37:29
Задача 6.

Имеется колода из 32-х карт. Сколькими способами могут расположиться в ней карты после перетасовывания?

Ответ: по формуле перестановок из n:

32! (тридцать два факториал), или примерно 2.6 * 10^35 (вариантов)


Название: Re: Комбинаторика
Отправлено: Феникс от 14 Октября 2011, 17:44:09
Но как наглядно проявилось неумение заглянуть за пределы привычного круга состояний.

Да, да...

Цитата:
То есть я это так понимаю, имеются 64 чистых состояния и их смешанные, проявленные в нашей реальности события, вот они и требуют при гадании второй гексограммы, то есть последующие проявление созревшей (перезревшей) уже ситуации.

Не комментирую. Не знаю. Далек от подходов И-Цзин.