С.И. Доронин, Квантовая магия
2.4. Суперпозиция состояний Наличие в окружающем нас мире «противоестественных» (с классической точки зрения) состояний, объективность их существования подтверждены физическими экспериментами, и этот факт является прямым следствием одного из самых фундаментальных принципов квантовой механики — принципа суперпозиции состояний. Или лучше сказать наоборот: это неотъемлемое свойство природы нашло свое отражение в основном теоретическом принципе квантовой механики. Сформулировать его можно следующим образом. Принцип суперпозиции состояний: если система может находиться в различных состояниях, то она способна находиться в состояниях, которые получаются в результате одновременного «наложения» друг на друга двух или более состояний из этого набора. В квантовой теории есть два качественно различных вида суперпозиции в соответствии с тем, что чистые состояния могут описываться вектором состояния, а смешанные — матрицами плотности. Поэтому и накладываться друг на друга могут либо векторы состояния, либо матрицы плотности. Мы пока будем говорить о суперпозиции чистых состояний, чтобы подчеркнуть это обстоятельство, обычно используют выражения «когерентная суперпозиция», «когерентные состояния». В классической физике понятие суперпозиции тоже широко используется. Все мы рисовали в школе стрелочки векторов для сил, приложенных к телу, и по правилу параллелограмма (треугольника) находили результирующий вектор силы. Мы пользовались при этом принципом суперпозиции классической физики, суть которого в том, что результирующий эффект от нескольких независимых воздействий представляет собой сумму эффектов, вызываемых каждым воздействием в отдельности. Он справедлив для систем или физических полей, описываемых линейными уравнениями. Но в классической физике принцип суперпозиции является приближенным, а не универсальным, фундаментальным. Это скорее следствие линейности уравнений движения соответствующих систем и служит достаточно хорошим приближением, когда нелинейные эффекты незначительны. Иная ситуация — в квантовой механике. В ней принцип суперпозиции является фундаментальным, одним из основных постулатов, определяющих структуру математического аппарата теории. Из него следует, например, что состояния квантовомеханической системы должны изображаться векторами линейного пространства, что операторы физических величин должны быть линейными и т. д. Но основное отличие не в этом. Давайте вчитаемся еще раз более внимательно в формулировку этого принципа: если система может находиться в различных состояниях, то она может одновременно находиться сразу в двух (и более) состояниях! Например, если в качестве отдельных состояний системы взять пространственные координаты ее центра масс, и наша система способна принимать различные положения в пространстве, то из принципа суперпозиции следует, что она в состоянии находиться одновременно сразу во всех точках пространства — то есть быть полностью «размазанной» во всем пространственно-временном континууме. И это будет вполне естественное состояние с точки зрения квантовой теории! Для практической реализации такого необычного состояния системы нет принципиальных теоретических запретов. Разве это не удивительно? Не противоречит нашим привычным представлениям о реальности? Именно это явное противоречие «здравому смыслу» приводит в отчаяние уже не одно поколение физиков. Положение усугубляется тем, что никаких ограничений в квантовой теории на этот принцип не накладывается — он в равной степени применим и к макроскопическим объектам, и к микрочастицам. Основное отличие принципа суперпозиции в квантовой теории от его классического аналога в том, что состояния, которые «накладываются» друг на друга в квантовой теории, — это альтернативные, взаимоисключающие состояния, когда одно из них полностью отрицает другое. Если мы находимся где-то в одном месте, значит, в другом месте нас нет — это подсказывает здравый смысл. Но в квантовой теории складываются именно такие взаимоисключающие состояния, и система может находиться в таких состояниях одновременно! В классической физике, если взять те же силы, они вовсе не противоречат друг другу. Одна может спокойно действовать наряду с другой, и они вполне мирно «уживаются» друг с другом, а при их сложении мы получаем такую же обычную силу, которая не хуже и не лучше других сил. Только если мы сложим две противоположные и одинаковые по модулю силы, их равнодействующая будет равна нулю. Силы тогда взаимно компенсируются, они как бы «уничтожают» друг друга, и на тело вообще никакие силы действовать не будут. А что получается в квантовой теории? Там все состояния несовместимы друг с другом. Но если мы сложим, например, два таких взаимоисключающих состояния, то уже не сможем сказать, что система при этом «уничтожится». Система при квантовом подходе может «исчезнуть» только в одном случае — если у нее нет вообще никаких состояний, а в случае суперпозиции мы имеем как минимум два. Отсутствие системы как элемента реальности в квантовой теории возможно лишь тогда, когда мы вообще не можем сопоставить с системой никаких состояний. Если такие состояния есть, значит, есть и система. Но вот что она из себя представляет, когда находится в суперпозиции двух взаимоисключающих состояний? Что происходит со спином, когда на состояние «спин-вверх» накладывается состояние «спин-вниз»? Это все равно что человек стоит одновременно «на ногах» и в то же самое время «вверх ногами». Как такое может быть, как это понимать? «Хороший вопрос», который может свести с ума, если подходить к нему с точки зрения наших привычных представлений о реальности. Хотя и здесь может помочь аналогия с классическими представлениями. Если мы продолжим рассуждать о нашем примере с двумя противоположными силами, то придем к выводу, что ситуация в квантовой теории отдаленно ее напоминает. Итак, мы имеем равнодействующую двух сил, которая равна нулю, — что это означает? Можно сказать, что такой физической величины, как сила, для нашей системы в явном виде практически не существует. Две уравновешивающие силы находятся как бы в скрытом состоянии, они не проявлены, недоступны для восприятия и непосредственного наблюдения за результатами действия каждой из этих сил в отдельности. Лишь когда мы уберем одну из этих сил, то сможем явно убедиться в наличии второй, например, по ускорению, которое приобретет тело под действием оставшейся силы. Что-то похожее происходит и в квантовой теории. Для простоты мы будем говорить о суперпозиции состояний с равными весами. Когда система пребывает в суперпозиции двух (и более) состояний, то в явном виде они не существуют — система не имеет характерных особенностей ни того, ни другого состояния. Так, если человек может находиться в двух состояниях — «на ногах» и «на голове» — то, когда он пребывает в суперпозиции этих состояний, мы, глядя со стороны, не увидим ни одного из них. На «языке» квантовой теории это означает, что система в этом случае находится в нелокальном состоянии — нет такого локального элемента реальности, который являлся бы «носителем» этих двух состояний. Человека в нашем примере вообще нет в качестве локального объекта, иными словами — «в своем физическом теле», и это вполне логично, поскольку ситуацию, когда мы видим его стоящим одновременно и «на ногах», и «на голове», действительно трудно себе вообразить. Но это не говорит о том, что наша система исчезла, перестала существовать. Так же, как и силы в классическом примере вовсе не исчезают от того, что одна из них уравновешивает другую. Они продолжают существовать, и в их наличии можно убедиться, нарушив равновесие этих сил, то есть каким-то образом воздействовав на систему. В случае суперпозиции состояний похожая ситуация. Система имеет два различных состояния в качестве потенциально возможных локальных своих проявлений. Это те состояния, которые мы можем явно наблюдать и зафиксировать, но, чтобы их «проявить», нам необходимо с системой каким-то образом «проконтактировать». Здесь есть два принципиально различных варианта: во-первых, произвести прямое измерение системы, то есть осуществить взаимодействие с измерительным прибором (окружением). В этом случае мы просто разрушаем суперпозицию состояний и «проявляем» одно из потенциальных состояний системы в его локальном, привычном для нас материальном облике. Этот физический процесс, как нам уже известно, называется декогеренцией. Второй вариант: «проявлять» то или иное локальное состояние при помощи так называемых унитарных (обратимых) операций. В этом случае сохраняется возможность снова перевести систему в суперпозиционное состояние. В этом заключается принципиальное отличие от первого варианта, где такая возможность утрачивается. Точнее, реализовать ее можно было только в том случае, если бы мы умели управлять состоянием всей объединенной системы, в состав которой вошла наша исходная система при взаимодействии. Такие унитарные операции сейчас применяются для манипулирования кубитами в квантовом компьютинге. Необычную особенность квантовой суперпозиции — нелокальность и непроявленный потенциальный характер такого состояния, можно пояснить еще следующим образом. В отличие от классической суперпозиции, в квантовом случае мы никогда не получим промежуточное значение между состояниями, участвующими в суперпозиции. Например, классическая суперпозиция двух цветов, черного и белого, дает в результате серый цвет, но квантовая суперпозиция никакой серый цвет дать не в состоянии, никакого цвета вообще не будет — лишь при декогеренции, при взаимодействии (измерении) можно получить один из цветов — либо черный, либо белый. Столь необычные состояния объектов, которые находятся в нелокальной суперпозиции, будоражат умы физиков уже многие десятилетия. Что будет, если мы совместим несовместимое? Что будет, если «наложим» друг на друга добро и зло, жизнь и смерть? В последнем случае часто вспоминают «кота Шредингера», которого физики приводят в качестве примера, поясняющего всю необычность состояний, существующих в окружающем мире, если не ограничиваться привычными рамками классической реальности. Такие состояния имеют место, когда мы готовы выйти за пределы предметного мира и хотим «заглянуть» в реальность более высокого уровня, более широкую, содержащую весь материальный мир в качестве своей составной части. При квантовой суперпозиции живого и мертвого кота он не может находиться в некоем промежуточном полуживом (полумертвом) состоянии, как это могло иметь место в классическом варианте. Он именно одновременно и жив, и мертв, находится сразу в двух этих состояниях. Но вся парадоксальность такой ситуации в квантовой теории легко снимается, поскольку в этом случае кота просто нет в качестве локального объекта нашего материального мира. Можно сказать как угодно — что кот находится в потустороннем мире, в информационной сфере, в квантовом домене совокупной реальности и т. п. Но самое главное, что как обычного кота, которого можно погладить, — его просто нет. В своем физическом теле, в привычном облике кота, то есть в качестве локального объекта нашего материального мира он просто не существует. Он находится в состоянии более общего типа, а локальное состояние — только один из частных случаев, один из возможных вариантов бытия нашего кота. Он может проявиться из нелокальной суперпозиции в процессе декогеренции. Лишь тогда мы можем увидеть его, и уже не в каком-то парадоксальном сочетании жизни и смерти, а только в одном из этих состояний. Но такое объяснение квантовой теории, этот вывод, этот результат не всех устраивает. Ведь если система может находиться в таких «противоестественных» состояниях, то придется признать наличие более глубокой и всеобъемлющей реальности. Весь привычный для нас мир материи (вещества и физических полей) оказывается тогда лишь незначительной частью совокупной квантовой реальности. По сути, признание этого факта означает крушение основы мировоззрения большинства из нас. Поэтому многие не готовы принять эти выводы квантовой теории. Но, может быть, принцип суперпозиции — это выдумка физиков-теоретиков? Возможно, это лишь математические манипуляции, которые не имеют под собой никакой реальной физики? Конечно же, нет, этот принцип не был «взят с потолка», уместно сказать, что он был выстрадан при становлении квантовой механики. Только с помощью этого принципа удавалось объяснить многие физические эксперименты, которые не укладывались в рамки классического описания. Это сама реальность при более пристальном взгляде на нее «подсказывала» тот способ, который позволял адекватно ее описывать, сама природа помогала найти тот теоретический метод, благодаря которому получались правильные количественные значения величин и удавалось точно предсказывать результаты физических экспериментов. Стоило «копнуть» законы природы чуть глубже, как оказалось, что окружающий нас мир — лишь часть чего-то более емкого, всеобъемлющего. Квантовая теория раздвинула границы реальности, показав, что материальный мир и классические состояния — это далеко не все, что нас окружает. Принцип суперпозиции существенно расширил сферу состояний и оставил на долю классического мира только незначительную часть в пределах совокупной квантовой реальности. Сама природа подсказала, что когерентные суперпозиционные состояния — вовсе не абстракция, а неотъемлемый элемент окружающей реальности. Собственно говоря, для объяснения физических процессов и явлений они и были введены. Но понадобилось достаточно много времени, прежде чем пришло понимание, почему в одних случаях суперпозиционные состояния имеют место, а в других нет, по каким законам они «живут», какие процессы нелокальную суперпозицию разрушают, а какие восстанавливают. И основная роль в том, что понимание этих процессов стало возможно, опять-таки принадлежит самой природе, поскольку ответы на эти вопросы исследователи стали получать в результате интенсивной практической работы над реальными физическими системами, позволяющими использовать когерентную суперпозицию в качестве рабочего ресурса для квантового компьютера и других технических устройств. Во многом благодаря непосредственной работе с когерентными состояниями, манипуляции ими в физических лабораториях, покров таинственности с нелокальных состояний стал спадать — они начали раскрывать свои поразительные свойства, удивительные особенности и небывалые, по сравнению с классическими состояниями, возможности. Когерентные состояния очень чувствительны к внешним воздействиям. Они возможны для чистых состояний, то есть для замкнутых (изолированных) систем, либо для псевдочистых состояний (квазизамкнутых систем) в промежутках времени, которые меньше периода декогеренции. Может возникнуть вопрос: что толку в этих состояниях, если когерентная суперпозиция не наблюдаема, если любые попытки измерения (наблюдения) такую суперпозицию разрушают, приводят к декогеренции? Да, суперпозиция не наблюдаема, это нелокальное состояние. Наблюдать в виде локальных форм можно только результат декогеренции этого состояния. И, тем не менее, когерентные состояния научились использовать на практике. Когерентность по отдельным степеням свободы системы можно сохранять на временах, меньших времени декогеренции окружением, ее можно восстанавливать, поддерживать, ею можно манипулировать. При этом, как уже говорилось, когерентность не нарушают унитарные преобразования системы, и их сейчас широко используют для управления когерентными состояниями, например, в квантовом компьютинге. Такие состояния обладают необычными свойствами. Наличие нелокальных корреляций между подсистемами (кубитами) обеспечивает согласованное их поведение, когда все кубиты ведут себя как единое целое, мгновенно реагируя на любые изменения состояния хотя бы одного из них. Все это оправдывает затраченные усилия, поскольку ресурс квантового компьютера в этом случае возрастает экспоненциально по сравнению с обычным. Квантовый компьютер все вычисления выполняет как бы в «потустороннем мире», за пределами материального мира локальных форм — там, где когерентная суперпозиция не нарушена. А результаты этих вычислений мы уже можем увидеть в привычной дискретной форме, «проявив» его при помощи процесса декогеренции. Если говорить о теоретическом описании суперпозиционных состояний, о математическом формализме, то представление состояния в виде результата суперпозиции некоторого числа других состояний — это математическая процедура, которая всегда возможна и не имеет отношения к физике. Она аналогична разложению волны на компоненты Фурье. Имеет ли такое разложение физический смысл, будет ли оно полезно, зависит от конкретной задачи, от конкретных физических условий и тех величин, которые нас интересуют. Вместе с тем, расширение класса состояний, изучение физики когерентных суперпозиционных состояний определяют некоторые специфические особенности в структуре математического аппарата квантовой теории. Как я пытался показать выше, принцип суперпозиции состояний — это что-то вроде операции суммирования. Суперпозиция означает, что состояния можно каким-то образом складывать, получая при этом новые состояния системы. Поэтому состояния необходимо связать с какими-либо математическими объектами, которые допускают сложение, и получаются математические объекты того же типа. Из наиболее простых математических структур, удовлетворяющих этим условиям, нам известны векторы, которые и сопоставляются различным состояниям системы. Такие векторы называются в квантовой теории векторами состояния — к их рассмотрению мы сейчас и перейдем. назад | оглавление | вперед Домой |