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An experimental test of non-local realism
Simon Gröblacher1,2, Tomasz Paterek3,4, Rainer Kaltenbaek1, Časlav Brukner1,2, Marek Żukowski1,3,
Markus Aspelmeyer1,2 & Anton Zeilinger1,2

Most working scientists hold fast to the concept of ‘realism’—a viewpoint according to which an external reality exists
independent of observation. But quantum physics has shattered some of our cornerstone beliefs. According to Bell’s
theorem, any theory that is based on the joint assumption of realism and locality (meaning that local events cannot be
affected by actions in space-like separated regions) is at variance with certain quantum predictions. Experiments with
entangled pairs of particles have amply confirmed these quantum predictions, thus rendering local realistic theories
untenable. Maintaining realism as a fundamental concept would therefore necessitate the introduction of ‘spooky’ actions
that defy locality. Here we show by both theory and experiment that a broad and rather reasonable class of such non-local
realistic theories is incompatible with experimentally observable quantum correlations. In the experiment, we measure
previously untested correlations between two entangled photons, and show that these correlations violate an inequality
proposed by Leggett for non-local realistic theories. Our result suggests that giving up the concept of locality is not sufficient
to be consistent with quantum experiments, unless certain intuitive features of realism are abandoned.

Physical realism suggests that the results of observations are a con-
sequence of properties carried by physical systems. It remains sur-
prising that this tenet is very little challenged, as its significance goes
far beyond science. Quantum physics, however, questions this
concept in a very deep way. To maintain a realistic description of
nature, non-local hidden-variable theories are being discussed as a
possible completion of quantum theory. They offer to explain intrinsic
quantum phenomena—above all, quantum entanglement1—by non-
local influences. Up to now, however, it has not been possible to test
such theories in experiments. We present an inequality, similar in
spirit to the seminal one given by Clauser, Horne, Shimony and
Holt2 on local hidden variables, that allows us to test an important
class of non-local hidden-variable theories against quantum theory.
The theories under test provide an explanation of all existing two-
qubit Bell-type experiments. Our derivation is based on a recent
incompatibility theorem by Leggett3, which we extend so as to make
it applicable to real experimental situations and also to allow sim-
ultaneous tests of all local hidden-variable models. Finally, we per-
form an experiment that violates the new inequality and hence
excludes for the first time a broad class of non-local hidden-variable
theories.

Quantum theory gives only probabilistic predictions for indi-
vidual events. Can one go beyond this? Einstein’s view4,5 was that
quantum theory does not provide a complete description of physical
reality: ‘‘While we have thus shown that the wavefunction does not
provide a complete description of the physical reality, we left open the
question of whether or not such a description exists. We believe,
however, that such a theory is possible.’’4. It remained an open ques-
tion whether the theory could be completed in Einstein’s sense6. If so,
more complete theories based on objective properties of physical
systems should be possible. Such models are referred to as hidden-
variable theories.

Bell’s theorem7 proves that all hidden-variable theories based on
the joint assumption of locality and realism are at variance with the
predictions of quantum physics. Locality prohibits any influences
between events in space-like separated regions, while realism claims

that all measurement outcomes depend on pre-existing properties of
objects that are independent of the measurement. The more
refined versions of Bell’s theorem by Clauser, Horne, Shimony and
Holt2 and by Clauser and Horne8,9 start from the assumptions of local
realism and result in inequalities for a set of statistical correlations
(expectation values), which must be satisfied by all local realistic
hidden-variable theories. The inequalities are violated by quantum
mechanical predictions. Greenberger, Horne and Zeilinger10,11

showed that already perfect correlations of systems with at least three
particles are inconsistent with these assumptions. So far, all experi-
ments motivated by these theorems are in full agreement with
quantum predictions12–17. For some time, loopholes existed that
allowed the observed correlations to be explained within local real-
istic theories. In particular, an ideal Bell experiment has to be per-
formed with detectors of sufficiently high efficiency (to close the
‘detection loophole’) and with experimental settings that are ran-
domly chosen in space-like separated regions (to close the ‘locality
loophole’). Since the first successful Bell experiment by Freedman
and Clauser12, later implementations have continuously converged to
closing both the locality loophole14,15,18,19 on the one hand and the
detection loophole16,20 on the other hand. Therefore it is reasonable
to consider the violation of local realism a well established fact.

The logical conclusion one can draw from the violation of local
realism is that at least one of its assumptions fails. Specifically, either
locality or realism or both cannot provide a foundational basis for
quantum theory. Each of the resulting possible positions has strong
supporters and opponents in the scientific community. However,
Bell’s theorem is unbiased with respect to these views: on the basis
of this theorem, one cannot, even in principle, favour one over the
other. It is therefore important to ask whether incompatibility theo-
rems similar to Bell’s can be found in which at least one of these
concepts is relaxed. Our work addresses a broad class of non-local
hidden-variable theories that are based on a very plausible type of
realism and that provide an explanation for all existing Bell-type
experiments. Nevertheless we demonstrate, both in theory and
experiment, their conflict with quantum predictions and observed
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measurement data. Following the recent approach of Leggett3, who
introduced the class of non-local models and formulated an incom-
patibility theorem, we have analysed its assumptions and derived an
inequality valid for such theories that can be experimentally tested. In
addition, the experiments allow for a simultaneous test of all local
hidden-variable models—that is, the measurement data can neither
be explained by a local realistic model nor by the considered class of
non-local models.

The theories under investigation describe experiments on pairs of
particles. It is sufficient for our purposes to discuss two-dimensional
quantum systems. We will hence focus our description on the polar-
ization degree of freedom of photons. The theories are based on the
following assumptions: (1) all measurement outcomes are deter-
mined by pre-existing properties of particles independent of the
measurement (realism); (2) physical states are statistical mixtures
of subensembles with definite polarization, where (3) polarization
is defined such that expectation values taken for each subensemble
obey Malus’ law (that is, the well-known cosine dependence of the
intensity of a polarized beam after an ideal polarizer).

These assumptions are in a way appealing, because they provide
a natural explanation of quantum mechanically separable states
(polarization states indeed obey Malus’ law). In addition, they do
not explicitly demand locality; that is, measurement outcomes may
very well depend on parameters in space-like separated regions. As
a consequence, such theories can explain important features of
quantum mechanically entangled (non-separable) states of two part-
icles (a specific model can be found in Supplementary Information):
first, they do not allow information to be transmitted faster than the
speed of light; second, they reproduce perfect correlations for all
measurements in the same bases, which is a fundamental feature of
the Bell singlet state; and third, they provide a model for all thus far
performed experiments in which the Clauser, Horne, Shimony and
Holt (CHSH) inequality was violated. Nevertheless, we will show that
all models based on assumptions (1)–(3) are at variance with other
quantum predictions.

A general framework of such models is the following: assumption
(1) requires that an individual binary measurement outcome A for
a polarization measurement along direction a (that is, whether a
single photon is transmitted or absorbed by a polarizer set at a
specific angle) is predetermined by some set of hidden variables
l, and a three-dimensional vector u, as well as by some set of other
possibly non-local parameters g (for example, measurement
settings in space-like separated regions)—that is, A 5 A(l,u,a,g).
According to assumption (3), particles with the same u but
with different l build up subensembles of ‘definite polarization’
described by a probability distribution ru(l). The expectation value
�AA(u), obtained by averaging over l, fulfils Malus’ law, that is,

�AA(u)~

ð
dlru(l)A(l,u,a,g)~u:a. Finally, with assumption (2),

the measured expectation value for a general physical state is given
by averaging over the distribution F(u) of subensembles, that is,

hAi~
ð

duF uð ÞA(u).

Let us consider a specific source, which emits pairs of photons
with well-defined polarizations u and v to laboratories of Alice and
Bob, respectively. The local polarization measurement outcomes A
and B are fully determined by the polarization vector, by an addi-
tional set of hidden variables l specific to the source and by any set
of parameters g outside the source. For reasons of clarity, we choose
an explicit non-local dependence of the outcomes on the settings a
and b of the measurement devices. Note, however, that this is just
an example of a possible non-local dependence, and that one can
choose any other set out of g. Each emitted pair is fully defined by
the subensemble distribution ru,v(l). In agreement with assump-
tion (3) we impose the following conditions on the predictions for
local averages of such measurements (all polarizations and mea-
surement directions are represented as vectors on the Poincaré

sphere21):

�AA(u)~

ð
dlru,v(l)A(a,b,l)~u:a ð1Þ

B(v)~

ð
dlru,v(l)B(b,a,l)~v:b ð2Þ

It is important to note that the validity of Malus’ law imposes the
non-signalling condition on the investigated non-local models, as the
local expectation values do only depend on local parameters. The
correlation function of measurement results for a source emitting
well-polarized photons is defined as the average of the products of the
individual measurement outcomes:

AB(u,v)~

ð
dlru,v(l)A(a,b,l)B(b,a,l) ð3Þ

For a general source producing mixtures of polarized photons the
observable correlations are averaged over a distribution of the polar-
izations F(u,v), and the general correlation function E is given by:

E~hABi~
ð

dudvF u,vð ÞAB(u,v) ð4Þ

It is a very important trait of this model that there exist subensembles
of definite polarizations (independent of measurements) and that the
predictions for the subensembles agree with Malus’ law. It is clear that
other classes of non-local theories, possibly even fully compliant with
all quantum mechanical predictions, might exist that do not have this
property when reproducing entangled states. Such theories may, for
example, include additional communication22 or dimensions23. A
specific case deserving comment is Bohm’s theory24. There the
non-local correlations are a consequence of the non-local quantum
potential, which exerts suitable torque on the particles leading to
experimental results compliant with quantum mechanics. In that
theory, neither of the two particles in a maximally entangled state
carries any angular momentum at all when emerging from the
source25. In contrast, in the Leggett model, it is the total ensemble
emitted by the source that carries no angular momentum, which is a
consequence of averaging over the individual particles’ well defined
angular momenta (polarization).

The theories described here are incompatible with quantum the-
ory. The basic idea of the incompatibility theorem3 uses the following
identity, which holds for any numbers A~+1 and B~+1:

{1z AzBj j~AB~1{ A{Bj j ð5Þ

One can apply this identity to the dichotomic measurement results
A~A(a,b,l)~+1 and B~B(b,a,l)~+1. The identity holds even if
the values of A and B mutually depend on each other. For example, the
value of a specific outcome A can depend on the value of an actually
obtained result B. In contrast, in the derivation of the CHSH inequal-
ity it is necessary to assume that A and B do not depend on each other.
Therefore, any kind of non-local dependencies used in the present
class of theories are allowed. Taking the average over the subensembles
with definite polarizations we obtain:

{1z

ð
dlru,v(l) AzBj j~

ð
dlru,v(l)AB~1{

ð
dlru,v(l) A{Bj j ð6Þ

Denoting these averages by bars, one arrives at the shorter expression:

{1z AzBj j~AB~1{ A{Bj j ð7Þ
As the average of the modulus is greater than or equal to the modulus
of the averages, one gets the set of inequalities:

{1z AzB
�� ��ƒABƒ1{ A{B

�� �� ð8Þ

By inserting Malus’ law, equations (1) and (2), in equation (8), and
by using expression (4), one arrives at a set of inequalities for experi-
mentally accessible correlation functions (for a detailed derivation,
see the Supplementary Information). In particular, if we let Alice
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choose her observable from the set of two settings a1 and a2, and Bob
from the set of three settings b1, b2 and b3 5 a2, the following general-
ized Leggett-type inequality is obtained:

SNLHV~ E11(Q)zE23(0)j jz E22(Q)zE23(0)j jƒ4{
4

p
sin

Q

2

���
��� ð9Þ

where Ekl(Q) is a uniform average of all correlation functions, defined
in the plane of ak and bl, with the same relative angle Q; the subscript
NLHV stands for ‘non-local hidden variables’. For the inequality to
be applied, vectors a1 and b1 necessarily have to lie in a plane ortho-
gonal to the one defined by a2 and b2. This contrasts with the stand-
ard experimental configuration used to test the CHSH inequality,
which is maximally violated for settings in one plane.

The situation resembles in a way the status of the Einstein,
Podolsky and Rosen (EPR) paradox before the advent of Bell’s
theorem and its first experimental tests. The experiments of Wu
and Shaknov26 and of Kocher and Commins27 were designed to
demonstrate the validity of a quantum description of photon-pair

correlations. As this task only required the testing of correlations
along the same polarization direction, their results could not provide
experimental data for the newly derived Bell inequalities (Fig. 1A, B).
Curiously, as was shown by Clauser, Horne, Shimony and Holt, only
a small modification of the measurement directions, such that non-
perfect correlations of an entangled state are probed, was sufficient to
test Bell’s inequalities. The seminal experiment by Freedman and
Clauser12 was the first direct and successful test28. Today, all Bell
tests—that is, tests of local realism—are performed by testing corre-
lations of measurements along directions that lie in the same plane of
the Poincaré sphere. Similar to the previous case, violation of the
Leggett-type inequality requires only small modifications to that
arrangement: To test the inequality, correlations of measurements
along two orthogonal planes have to be probed (Fig. 1C). Therefore
the existing data of all Bell tests cannot be used to test the class of non-
local theories considered here.

Quantum theory violates inequality (9). Consider the quantum
predictions for the polarization singlet state of two photons,
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Figure 1 | Testing non-local hidden-variable theories. A, Diagram of a
standard two-photon experiment to test for hidden-variable theories. When
pumping a nonlinear crystal (NL) with a strong pump field, photon pairs are
created via SPDC and their polarization is detected with single-photon
counters (PC). Local measurements at A and B are performed along
directions a and b on the Poincaré sphere, respectively. Depending on the
measurement directions, the obtained correlations can be used to test Bell
inequalities (B) or Leggett-type inequalities (C). B, Correlations in one plane.
Shown are measurements along directions in the linear plane of the Poincaré

sphere (H (V) denotes horizontal (vertical) polarization). The original
experiments by Wu and Shaknov26 and Kocher and Commins27, designed to
test quantum predictions for correlated photon pairs, measured perfect
correlations (solid lines). Measurements along the dashed line allow a Bell
test, as was first performed by Freedman and Clauser12. C, Correlations in
orthogonal planes. All current experimental tests to violate Bell’s inequality
(CHSH) are performed within the shaded plane. Out-of plane
measurements are required for a direct test of the class of non-local hidden-
variable theories, as was first suggested by Leggett.
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Figure 2 | Experimental set-up. A 2-mm-thick type-II b-barium-borate
(BBO) crystal is pumped with a pulsed frequency-doubled Ti:sapphire laser
(180 fs) at l 5 395 nm wavelength and ,150 mW optical c.w. power. The
crystal is aligned to produce the polarization-entangled singlet state

Y{j iAB~
1ffiffiffi
2
p Hj iA Vj iB{ Vj iA Hj iB
� �

.

Spatial and temporal distinguishability of the produced photons (induced by
birefringence in the BBO) are compensated by a combination of half-wave
plates (l/2) and additional BBO crystals (BBO/2), while spectral
distinguishability (due to the broad spectrum of the pulsed pump) is

eliminated by narrow spectral filtering of 1 nm bandwidth in front of each
detector. In addition, the reduced pump power diminishes higher-order
SPDC emissions of multiple photon pairs. This allows us to achieve a two-
photon visibility of about 99%, which is well beyond the required threshold
of 97.4%. The arrows in the Poincaré spheres indicate the measurement
settings of Alice’s and Bob’s polarizers for the maximal violation of
inequality (9). Note that setting b2 lies in the y–z plane and therefore a
quarter-wave plate has to be introduced on Bob’s side. The coloured planes
indicate the measurement directions for various difference angles Q for both
inequalities.
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Y{j iAB~
1ffiffiffi
2
p Hj iA Vj iB{ Vj iA Hj iB
� �

, where, for example, Hj iA
denotes a horizontally polarized photon propagating to Alice. The
quantum correlation function for the measurements ak and bl per-
formed on photons depends only on the relative angles between these
vectors, and therefore Ekl~{ak

:bl~{cosQ. Thus the left hand side
of inequality (9), for quantum predictions, reads 2 cosQz1ð Þj j. The
maximal violation of inequality (9) is for Qmax~ 18.8u. For this
difference angle, the bound given by inequality (9) equals 3.792
and the quantum value is 3.893.

Although this excludes the non-local models, it might still be pos-
sible that the obtained correlations could be explained by a local
realistic model. In order to avoid that, we have to exclude both local
realistic and non-local realistic hidden-variable theories. Note how-
ever that such local realistic theories need not be constrained by
assumptions (1)–(3). The violation of the CHSH inequality invali-
dates all local realistic models. If one takes

SCHSH~ E11zE12{E21zE22j jƒ2 ð10Þ

the quantum value of the left hand side for the settings used to
maximally violate inequality (9) is 2.2156.

The correlation function determined in an actual experiment is
typically reduced by a visibility factor V to Eexp~{V cosQ owing to
noise and imperfections. Thus to observe violations of inequality (9)
(and inequality (10)) in the experiment, one must have a sufficiently
high experimental visibility of the observed interference. For the
optimal difference angle Qmax~ 18.8u, the minimum required vis-
ibility is given by the ratio of the bound (3.792) and the quantum
value (3.893) of inequality (9), or ,97.4%. We note that in standard
Bell-type experiments, a minimum visibility of only ,71% is suf-
ficient to violate the CHSH inequality, inequality (10), at the optimal
settings. For the settings used here, the critical visibility reads
2/2.2156 < 90.3%, which is much lower than 97.4%.

In the experiment (see Fig. 2), we generate pairs of polarization
entangled photons via spontaneous parametric down-conversion
(SPDC). The photon source is aligned to produce pairs in the polar-
ization singlet state. We observed maximal coincidence count rates
(per 10 s), in the H/V basis, of around 3,500 with single count rates of
95,000 (Alice) and 105,000 (Bob), 3,300 coincidences in the 645u
basis (75,000 singles at Alice and 90,000 at Bob), and 2,400 coinci-
dences in the R/L basis (70,000 singles at Alice and 70,000 at Bob).
The reduced count rates in the R/L basis are due to additional retard-
ing elements in the beam path. The two-photon visibilities are
approximately 99.0 6 1.2% in the H/V basis, 99.2 6 1.6% in the
645u basis and 98.9 6 1.7% in the R/L basis, which—to our know-
ledge—is the highest reported visibility for a pulsed SPDC scheme. So
far, no experimental evidence against the rotational invariance of the
singlet state exists. We therefore replace the rotation averaged cor-
relation functions in inequality (9) with their values measured for
one pair of settings (in the given plane).

In terms of experimental count rates, the correlation function
E(a,b) for a given pair of general measurement settings is defined by

E(a,b)~
NzzzN{{{Nz{{N{z

NzzzN{{zNz{zN{z

ð11Þ

where NAB denotes the number of coincident detection events
between Alice’s and Bob’s measurements within the integration time.
We ascribe the number 11, if Alice (Bob) detects a photon polarized
along a (b), and 21 for the orthogonal direction aH (bH). For
example, N1 2 denotes the number of coincidences in which Alice
obtains a and Bob bH. Note that E(ak ,bl)~Ekl(Q), where Q is the
difference angle between the vectors a and b on the Poincaré sphere.

To test inequality (9), three correlation functions (E(a1,b1),
E(a2,b2), E(a2,b3)) have to be extracted from the measured data.
We choose observables a1 and b1 as linear polarization measurements
(in the x–z plane on the Poincaré sphere; see Fig. 2) and a2 and b2 as
elliptical polarization measurements in the y–z plane. Two further

correlation functions (E(a2,b1) and E(a1,b2)) are extracted to test the
CHSH inequality, inequality (10).

The first set of correlations, in the x–z plane, is obtained by using
linear polarizers set to a1 and b1 (relative to the z axis) at Alice’s
and Bob’s location, respectively. In particular, a1~+45u, while b1

is chosen to lie between 45u and 160u (green arrows in Fig. 2). The
second set of correlations (necessary for CHSH) is obtained in the
same plane for a2~0u/90u and b1 between 45u and 160u. The set of
correlations for measurements in the y–z plane is obtained by intro-
ducing a quarter-wave plate with the fast axis aligned along the
(horizontal) 0u-direction at Bob’s site, which effectively rotates the
polarization state by 90u around the z-axis on the Poincaré sphere
(red arrows in Fig. 2). The polarizer angles are then set to a2~0u/90u
and b2 is scanned between 0u and 115u. With the same b2 and
a1~+45u, the expectation values specific only for the CHSH case
are measured. The remaining measurement for inequality (9) is the
check of perfect correlations, for which we choose a2~b3~0u, that
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Figure 3 | Experimental violation of the inequalities for non-local hidden-
variable theories (NLHV) and for local realistic theories (CHSH). a, Dashed
line indicates the bound of inequality (9) for the investigated class of non-
local hidden-variable theories (see text). The solid line is the quantum
theoretical prediction reduced by the experimental visibility. The shown
experimental data were taken for various difference angles Q (on the
Poincaré sphere) of local measurement settings. The bound is clearly
violated for 4u, Q , 36u. Maximum violation is observed for Qmax < 20u.
b, At the same time, no local realistic theory can model the correlations for
the investigated settings as the same set of data also violates the CHSH
inequality (10). The bound (dashed line) is overcome for all values Q around
Qmax, and hence excludes any local realistic explanation of the observed
correlations in a. Again, the solid line is the quantum prediction for the
observed experimental visibility. Error bars indicate s.d.

ARTICLES NATURE | Vol 446 | 19 April 2007

874
Nature   ©2007 Publishing Group



is, the intersection of the two orthogonal planes. Figure 3 shows the
experimental violation of inequalities (9) and (10) for various differ-
ence angles. Maximum violation of inequality (9) is achieved, for
example, for the settings fa1,a2,b1,b2,b3g~f450,00,550,100,00g.

We finally obtain the following expectation values for the opti-
mal settings for a test of inequality (9) (the errors are calculated
assuming that the counts follow a poissonian distribution): E(a1,b1)
520.92986 0.0105, E(a2,b2) 520.9426 0.0112, E(a2,b3) 520.9902
60.0118. This results in SNLHV 5 3.8521 6 0.0227, which violates
inequality (9) by 3.2 standard deviations (see Fig. 3). At the same
time, we can extract the additional correlation functions E(a2,b1) 5

0.3436 6 0.0088, E(a1,b2) 5 0.0374 6 0.0091 required for the CHSH
inequality. We obtain SCHSH 5 2.178 6 0.0199, which is a violation by
,9 standard deviations. The stronger violation of inequality (10) is
due to the relaxed visibility requirements on the probed entangled
state.

We have experimentally excluded a class of important non-local
hidden-variable theories. In an attempt to model quantum correla-
tions of entangled states, the theories under consideration assume
realism, a source emitting classical mixtures of polarized particles
(for which Malus’ law is valid) and arbitrary non-local dependencies
via the measurement devices. Besides their natural assumptions, the
main appealing feature of these theories is that they allow us both to
model perfect correlations of entangled states and to explain all exist-
ing Bell-type experiments. We believe that the experimental exclu-
sion of this particular class indicates that any non-local extension of
quantum theory has to be highly counterintuitive. For example, the
concept of ensembles of particles carrying definite polarization
could fail. Furthermore, one could consider the breakdown of other
assumptions that are implicit in our reasoning leading to the in-
equality. These include Aristotelian logic, counterfactual definiteness,
absence of actions into the past or a world that is not completely
deterministic29. We believe that our results lend strong support to
the view that any future extension of quantum theory that is in agree-
ment with experiments must abandon certain features of realistic
descriptions.
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Science (FNP), the Polish Ministry of Higher Education and Science, the City of
Vienna and the Foundational Questions Institute (FQXi).

Author Information Reprints and permissions information is available at
www.nature.com/reprints. The authors declare no competing financial interests.
Correspondence and requests for materials should be addressed to M.A.
(markus.aspelmeyer@quantum.at) or A.Z. (zeilinger-office@quantum.at).

NATURE | Vol 446 | 19 April 2007 ARTICLES

875
Nature   ©2007 Publishing Group


