


the frontiers collection



the frontiers collection

Series Editors:
D. Dragoman M. Dragoman A.C. Elitzur M.P. Silverman J. Tuszynski H.D. Zeh

The books in this collection are devoted to challenging and open problems at the forefront
of modern physics and related disciplines, including philosophical debates. In contrast
to typical research monographs, however, they strive to present their topics in a manner
accessible also to scientifically literate non-specialists wishing to gain insight into the deeper
implications and fascinating questions involved. Taken as a whole, the series reflects the
need for a fundamental and interdisciplinary approach to modern science. It is intended to
encourage scientists in all areas to ponder over important and perhaps controversial issues
beyond their own speciality. Extending from quantum physics and relativity to entropy,
time and consciousness – the Frontiers Collection will inspire readers to push back the
frontiers of their own knowledge.

Quantum Mechanics and Gravity
By M. Sachs

Mind, Matter and Quantum Mechanics
By H. Stapp

Quantum–Classical Correspondence
By A.O. Bolivar

Quantum–Classical Analogies
By D. Dragoman and M. Dragoman

Quo Vadis Quantum Mechanics?
Edited by A. C. Elitzur, S. Dolev, N. Kolenda

Relativity and the Nature of Spacetime
By V. Petkov

Series homepage – springeronline.com



A. Elitzur S. Dolev N. Kolenda (Eds.)

QUO VADIS
QUANTUM

MECHANICS?

123



Prof. Avshalom C. Elitzur
Unit of Interdisciplinary Studies, Bar-Ilan University
52900 Ramat-Gan, Israel e-mail: avshalom.elitzur@weizmann.ac.il

Dr. Shahar Dolev
The Edelstein Center for the History and Philosophy of Science
The Hebrew University of Jerusalem, Jerusalem 91904, Israel e-mail: shahardo@cc.huji.ac.il

Nancy Kolenda
Center for Frontier Sciences, Temple University
19122 Philadelphia, PA, USA e-mail: cfs@temple.edu

Series Editors:
Prof. Daniela Dragoman
University of Bucharest, Physics Faculty, Solid State Chair, PO Box MG-11,
76900 Bucharest, Romania email: danieladragoman@yahoo.com

Prof. Mircea Dragoman
National Research and Development Institute in Microtechnology, PO Box 38-160,
023573 Bucharest, Romania email: mircead@imt.ro

Prof. Avshalom C. Elitzur
Bar-Ilan University, Unit of Interdisciplinary Studies,
52900 Ramat-Gan, Israel email: avshalom.elitzur@weizmann.ac.il

Prof. Mark P. Silverman
Department of Physics, Trinity College,
Hartford, CT 06106, USA email: mark.silverman@trincoll.edu

Prof. Jack Tuszynski
University of Alberta, Department of Physics, Edmonton, AB,
T6G 2J1, Canada email: jtus@phys.ualberta.ca

Prof. H. Dieter Zeh
University of Heidelberg, Institute of Theoretical Physics, Philosophenweg 19,
69120 Heidelberg, Germany email: zeh@urz.uni-heidelberg.de

Cover figure: Detail from ‘Projection of a conchoid onto a sphere’.
Courtesy of J. Richter-Gebert and U. Kortenkamp

Library of Congress Control Number: 2004094689

ISSN 1612-3018
ISBN 3-540-22188-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether thewholeor part of the material is concerned,
specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version,
and permission for use must always be obtained from Springer. Violations are liable to prosecution under the
German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Center for Frontier Sciences 2005 Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.

Typesetting by Stephen Lyle using a Springer TEX macro package
Final processing by LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig
Cover design by KünkelLopka, Werbeagentur GmbH, Heidelberg

Printed on acid-free paper SPIN: 10921081 57/3141/YL - 5 4 3 2 1 0



Foreword

It is a great privilege for me to provide a foreword to this collection of excellent
articles, written by a very distinguished assembly of authors, and put together
with great skill by Nancy Kolenda, Avshalom Elitzur and Shahar Dolev. As
these articles so vividly demonstrate, quantum mechanics – undoubtedly one
of the supreme intellectual achievements of the 20th century – is still full
of deep mysteries, despite the theory having been with us now, essentially
in its modern ‘final’ form, for some three-quarters of a century. As we shall
see, from the various articles presented here, many different viewpoints are
held on how to regard the quantum formalism and its very unsettled relation
to our perceived physical reality. I make no attempt to summarize these
here. Instead, in this foreword, I shall address these mysteries from my own
particular perspective, leaving it to the authors of these articles to present a
good sampling of different viewpoints concerning the various perplexities of
this subject.

As I have explained elsewhere,1 I take the view that there are two quite
distinct classes of quantum mystery and, although these present us with co-
nundrums whose natures are deeply intertwined, they require, I believe, com-
pletely different attitudes towards their resolution. I call these two classes the
Z-mysteries and the X-mysteries. The ‘Z-mysteries’ refer to puzzle mysteries,
where it is, in my opinion, basically a matter of our accustoming ourselves to
the unfamiliar nature of a genuinely strange quantum world – where individ-
ual particles seem to be able to be in two places at once or spread out over the
whole of space, where the quantum spins obey beautiful algebraic and geo-
metric laws with great precision but where these laws bear little resemblance
to those of classical spinning bodies, and where the wonderful equation of
Schrödinger so precisely describes quantum behaviour but in a way in which
commonplace notions act according to strange mathematical procedures, mo-
mentum and energy being described by (differential) operators, which do not
commute with the corresponding ‘conjugate’ classical variables (and so on).
Essentially, the Z-mysteries arise from that part of the quantum formalism
which is concerned with Hilbert spaces in which it is unitary evolution that
controls behaviour. I refer to this as the U part of quantum mechanics.
1 Penrose, R. (1994): Shadows of the Mind. An approach to the missing science of

consciousness (Oxford University Press, Oxford), Chap. 5.



VI Foreword

The remaining part of the quantum formalism has to do with the measure-
ment paradox and the problem of the emergence of a macroscopic classical
world. Here is where the ‘X-mysteries’ arise, these being what I call paradox
mysteries. Indeed, rather than referring, as is more usual, to the ‘measure-
ment problem’, I prefer the term ‘measurement paradox’, as I do not see that
it can be satisfactorily resolved within the standard U framework of a (con-
tinuous deterministic) unitary evolution of a quantum state. Instead, we find
that, in the real world of our experience, the quantum state probabilistically
‘jumps’ – or reduces – to an eigenstate of the quantum operator that is as-
sociated with the measurement being performed, according to the remaining
part – the R part – of quantum mechanics. It is my firm belief that there
can be no satisfactory resolution of the X-mysteries (including the measure-
ment paradox itself) within the current U framework; that is, there can be
no resolution without some fundamental change in the present-day quantum
formalism (which holds U evolution to be sacrosanct). As I see it, there is
no ultimate answer in the commonly held viewpoint that R-type behaviour
arises (at least as an approximation or convenience) when a U-evolving mea-
suring apparatus, with its complicated environment, becomes irretrievably
entangled with the U-evolving quantum state under observation.2 Accord-
ingly, when it comes to the X-mysteries, I believe that it is not just a matter
of ‘accustoming ourselves to the unfamiliar nature’ of quantum behaviour.
We shall need a genuine change in the quantum theory that we use today.

Of course, although it is very easy to make a claim that some change is
necessary, it is not at all easy to make plausible specific suggestions as to the
nature of such a change, if we are not to run foul of observational evidence.
The mass of experimental support for quantum theory is indeed highly im-
pressive, covering an enormous range of disparate phenomena. To date, there
is no substantiated experimental evidence that tells against that specific hy-
brid (and, strictly speaking, self-inconsistent) U/R framework that consti-
tutes today’s quantum theory. For any realistic suggested change to have a
chance, it must reproduce the results of standard quantum mechanics over
the whole of the broad range of circumstances where quantum mechanics has
already been confirmed. Indeed, most changes that have been suggested so far
(such as those of Károlyházy, Pearle, Ghirardi–Rimini–Weber), for all their
ingenuity, involve a relatively small alteration to the Schrödinger equation,
this normally being the addition of some sort of small stochastic term. It
might be that such a change could provide a better approximation to reality
than the straight Schrödinger equation, but there is relatively little clear-
cut motivation for the particular forms of suggested extra term. This lack of
specificity tends to apply, most particularly, to the values of the small phys-
ical constants that appear in the modified equation, these being normally
2 Of course such a brief statement does not do justice to alternative viewpoints,

such as that of ‘environmental decoherence’ or ‘many worlds’, etc.; for my own
more detailed assessments, see the reference in Footnote 5, below, Chap. 29.
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provided with guessed values only, chosen small enough so as not to be in-
consistent with current observation, yet large enough that the modification
should provide the required level of R-like non-unitary action.

In my own proposal, I do not supply any specific suggestion for a modi-
fied form of Schrödinger equation. Instead, I propose merely the mass/time
scale at which changes in the standard U evolution must become apparent,
the reasons for this proposal coming from the foundational principles of that
other great revolution of 20th century physics: Einstein’s general theory of
relativity . There is a sense in which this proposed change in U evolution is a
necessary consequence of a ‘quantum gravity’ that fully respects the founda-
tional principles of general relativity, my claim being that such a ‘quantum
gravity’ requires also a modification of quantum mechanics, not just of the
classical spacetime notions of general relativity. The basic GR principle that
is called upon is the Principle of Equivalence, (although in an earlier ver-
sion of these ideas3 the Principle of General Covariance was what was called
into play). The conclusion, according to this proposal, is that a quantum
superposition of two states, each state being individually completely station-
ary, would be unstable, decaying into one or the other of the constituent
stationary states, giving us a physically objective R-type process. The aver-
age time-scale for this to take place can be calculated from a knowledge of
the expectation values of the mass distributions of the two constituent sta-
tionary states, and from the specific known values of Newton’s and Planck’s
constants.

The idea would be that any quantum measurement takes advantage of
this objective R-type process (generalized to the more general situation in
which the constituent states need not necessarily be stationary), where in
many practical situations the relevant mass displacement would take place
in the environment. In most situations, the resulting behaviour would be in-
distinguishable from that which is predicted by standard (hybrid) quantum
rules, but it would be possible to measure the difference in carefully con-
structed experiments. Experiments aimed at eventually testing this proposal
are at present under development.4

As a final comment, I should address the issue of human mentality and
its relation to the interpretation of quantum mechanics. It is a striking fact
that almost all the interpretations of quantum mechanics, that do not involve
an actual change in the quantum formalism, depend to some degree on the
presence of consciousness for providing the ‘observer’ that is required for
effective realization of the R procedure and the consequent emergence of
3 Penrose, R. (1996): On gravity’s role in quantum state reduction, Gen. Rel.

Grav. 28, 581–600. Penrose, R. (2000): Wavefunction collapse as a real gravita-
tional effect. In: Mathematical Physics 2000 , ed. by A. Fokas, T.W.B. Kibble,
A. Grigouriou, and B. Zegarlinski. (Imperial College Press, London), 266–282.

4 Marshall, W., Simon, C., Penrose, R., and Bouwmeester, D. (2003): Towards
quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (4 pages).
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a classical-like world.5 My own position is to take issue with this, and to
regard some form of an objective physical R procedure to be a necessary
ingredient of an improved theory of quantum mechanics. This is not to say
that I believe that the admittedly mysterious phenomenon of consciousness
has no connection with the measurement paradox of quantum theory. Far
from it; but my belief is that this phenomenon depends upon an objective
form of quantum R procedure – not that it is responsible for R.

Wherever the truth lies, in relation to these profound issues, there are
genuine prospects for important new developments in the coming century.
These may come from theory, or they may arise out of the results of new
experiments, or both. In whichever ways these developments come, there are
exciting times ahead.

Roger Penrose June 2004

5 See Penrose, R. (2004): The Road to Reality: A complete guide to the Laws of
the Universe (Jonathan Cape, London), Sects. 29.7, 29.8, 34.7.



Preface

Seventeen years ago the Center for Frontier Sciences at Temple University
was launched with an intriguing workshop entitled The Philosophy of Quan-
tum Theory . The event, chaired by our first director, Gideon Carmi, brought
together leading physicists and philosophers to address this issue. Partici-
pants included Roger Penrose, Abner Shimony, Bernard d’Espagnat, Yakir
Aharanov, Basil Hiley and the late David Bohm, as the keynote speaker. In
looking back, one of the workshop’s greatest achievements was to establish
a dialogue on quantum mechanics among these scientists, a dialogue that is
still continuing today.

Quo Vadis Quantum Mechanics? is a further brainchild of the Center for
Frontier Sciences. Some of the contributors to this volume were present at
the first workshop, whilst others were still unknown students at that time.
All contributors to the present volume were initially invited to a closed work-
shop/brainstorming at the Center. During that gathering, they each pre-
sented their ideas and exchanged views on what they believe are today’s
greatest challenges and open questions in quantum mechanics. The informal
presentations were followed by lively round-table discussions. Subsequently
all authors have written down, expanded and revised their contributions. To
add extra spice to the book, the editors have included transcripts of some
highlights of the round-table discussions. Springer did the rest – and their
best.

Comparing this volume with some transcripts of the 1987 workshop at our
disposal has made us very aware of the enormous progress that theoretical
and experimental quantum physics has undergone during this period.

When Richard J. Fox founded the Center in 1987, he stated that leading
scientists worldwide working on frontier scientific issues needed the opportu-
nity to come together and exchange information on their work and brainstorm
on their topics. The Center continues to uphold its founder’s vision. Let us
all keep in mind that the frontier scientific issues of the present are often the
mainstream science of the future.
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funding the workshop that provided us with the opportunity to bring all our
honorable guests together and develop this fine book.
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Č. Brukner
Institut für Experimentalphysik
University of Vienna
Boltzmanngasse 5
1090 Vienna, Austria
caslav.brukner@univie.ac.at

J. Butterfield
All Souls College
University of Oxford
Oxford OX1 4AL, UK
jb56@cus.cam.ac.uk

G.F. Chew
Theoretical Physics Group
Physics Division
Lawrence Berkeley National
Laboratory
Berkeley, CA 94720, USA
gfchew@mindspring.com

S. Dolev
Edelstein Center for the History
and Philosophy of Science
Hebrew University
Jerusalem, Israel
shahardo@cc.huji.ac.il

H.-P. Dürr
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Föhringer Ring 6
80805 Munich, Germany
hpd@mppmu.mpg.de

A.C. Elitzur
Unit of Interdisciplinary Studies
Bar Ilan University
Ramat-Gan, Israel
avshalom.elitzur@weizmann.
ac.il

D.M. Greenberger
City College of New York
New York, NY 10031, USA



XIV List of Contributors

J.B. Hartle
Department of Physics
University of California
Santa Barbara
CA 93106-9530; USA
hartle@physics.ucsb.edu

B.J. Hiley
Theoretical Physics Research Unit
Birkbeck College
London WC1E 7HX, UK
b.hiley@bbk.ac.uk

A.J. Leggett
Department of Physics
University of Illinois
at Urbana-Champaign
1110 West Green Street
Urbana, IL 61801-3080, USA
aleggett@uiuc.edu

F.-A. Popp
International Institute of Biophysics
Landesstiftung Hombroich:
Ehem. Raketenstation
Kapellener Straße o.N.
41472 Neuss, Germany
iib@lifescientists.de

C. Rovelli
Centre de Physique Théorique
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1 What Is the Measurement Problem Anyway?
Introductory Reflections on Quantum Puzzles

A.C. Elitzur

“Can the quantum-mechanical description of physical reality be considered
complete?” It is perhaps not coincidental that this question, the title of Ein-
stein’s famous onslaught on quantum mechanics [1], was echoed verbatim in
the title of Bohr’s reply [2]. Although Bohr opted for a “Yes”, today even his
ardent followers (see Wheeler below) believe that quantum mechanics is not
the last word.

Someday, we all believe, a new theory will revolutionize physics, just as
relativity and quantum mechanics did at the dawn of the 20th century. It will
include its two parent revolutions as special cases, just as classical mechanics
has been comfortably embedded within relativity theory and less comfortably
within quantum mechanics. What this theory will tell us about the nature of
reality is anybody’s guess, but John Wheeler has vividly captured its most
immediate feature [3]:

Surely someday, we can believe, we will grasp the central idea of it
all as so simple, so beautiful, so compelling that we will say to each
other, “Oh, how could it have been otherwise! How could we have
been so blind so long!” (p. 28)

Greenberger, however, has much more sobering reflections [4]:

Most physicists believe that, had they been around at the birth of
relativity, they would have been able to instantly appreciate its rad-
ical elements. But my own experience indicates that if Einstein were
to send his paper to Physical Review today it would have almost no
chance at all of being published. “Highly speculative!” would be the
referee report, a death shell to any paper. He would have to append
it to an article on string theory, or some other fad, and hope it wasn’t
noticed. (p. 558)

We can only hope that Wheeler is correct and Greenberger is exaggerat-
ing, and that the new theory is not already laid down in some yellowing
manuscript concealed in some embittered author’s drawer. Let us also hope
that the theory will be published within our lifetime.

How would the puzzles of quantum mechanics fare in that revolution? Be-
fore indulging in some guesses, which are naturally bound to disclose personal
biases, let us recall the puzzles themselves. There are three main questions [5]:
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• Wave–Particle Duality. Subject any particle to an experiment set to
measure waves and it will manifest unmistakably undulatory properties.
Perform on it an experiment designed to measure corpuscular proper-
ties and you will end up with a particle. Both results are equivocal –
and mutually exclusive. As Feynman [6] aptly remarked: the double-slit
experiment (where this dual nature becomes most visible through the in-
terference pattern) contains the core of the quantum mechanics mystery.
The uncertainty principle is the general formulation of this duality, allow-
ing only one out of a pair of physical values to be measured with arbitrary
accuracy.

• Quantum–Classical Limit. The extraordinary predictions of quantum
mechanics, such as the above interference effects, hold perfectly for parti-
cles, but fail flatly for macroscopic objects. In other words, superposition
is observed in particles but never in cats, even though the latter are made
of the former. Where does the jurisdiction of quantum mechanics end?
Atoms also exhibit interference, and so do large molecules, although the
experiments become difficult with the size of the interfering objects. Does
classical mechanics simply take over at some scale [7] or is it only tech-
nological limitations that do not yet allow us to demonstrate the quan-
tum behavior of larger objects (see Chap. 3)? This is the ‘measurement
problem’, arising every time the properties of a particle are amplified to
macroscopic extent.

• Non-Locality. The wavelike behavior of a single particle entails that, in
order to obey conservation laws, distant parts of the wave function must
instantaneously affect one another upon measurement. And indeed the
violations of Bell’s inequalities [8] manifest instantaneous effects of one
particle’s measurement on the state of another, entangled particle, regard-
less of the distance separating them. Quantum mechanics thus defies the
spirit, if not the letter, of relativistic law.

It is such puzzles that herald a scientific revolution. Yet despite repeated
promises made by superstring and other theories, no such revolution has
yet appeared. Still, although we cannot know the theory itself, Wheeler’s
poetic sentiments about how we would feel upon encountering it reflect sound
scientific intuition: the theory will probably appeal to us as true. We can
therefore – and in fact, we should – lay down our expectations. It may prove
to be a constructive exercise. So, based on the past experience of science, our
long-anticipated theory should manifest the following qualities:

• Beauty. Every scientist is familiar with the aesthetic pleasure one experi-
ences upon understanding a profound theory. An entire realm of facts be-
comes organically integrated, and, at the same time, simpler. Seemingly-
accidental effects, which the earlier theory regarded as ‘just being that
way’, turn out to be meaningful, even imperative. Hence, the theory that
we yearn for should likewise render the quantum peculiarities just as nat-
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ural as the effects known from classical physics. A consequence of this
expectation of elegance is:

• Unity. It would, frankly, be quite disappointing if the new theory ex-
plained, say, only the wave–particle duality while non-locality was merely
assumed to be there and the measurement problem was relegated to yet
another revolution. Rather, one resolution should naturally entail the oth-
ers.

• Continuity. Scientific revolutions, unlike all too many political revolu-
tions, do not destroy the fruits of earlier theories but rather incorporate
them within a new context. This is true not only for the empirical data
which the earlier theories revealed, but also for many of their insights
and principles, which find their place within the new framework. The
new revolution will therefore incorporate not only present-day quantum
formalism, but many features of its prevailing interpretations as well.1

• Sacrifice. All the above cannot come without a price. If the solution to
the quantum puzzles has lingered so long, it is most likely being hindered
by some highly cherished assumption which no one is willing to give up.
We therefore have to prepare for a serious blow that the new theory
will inflict on our world view. At this point, proponents of some of the
existing interpretations might argue: “But we have already done that! We
gave up the notion of objective reality and/or locality!” Well, they did,
but unfortunately they did not get much in return. A genuine revolution
is balanced differently: For what it has robbed us, it generously rewards
us with:

• Novel Predictions. While the new theory will no doubt point out where
we have been blind all along, as Wheeler so incisively put it, it will not
stop there, but go on to tell us what is out there that we should now see.
In other words, it will make new predictions, challenging us to verify or
refute them by experiment or observation. Moreover, the theory will also
yield:

• Unexpected Dividends. One of the most profound features of reality
is that simplicity goes hand in hand with universality. One may drop a
basic assumption or even an axiom and, lo and behold, the edifice built on
the remaining narrower foundation turns out to be wider : additional phe-
nomena, beyond those which one sought to explain, turn out to fit neatly
within the new theory. Maxwell’s unification of electricity and magnetism,
which surprisingly turned out to account for light too, is a prominent ex-
ample. Similarly, the new explanation of quantum phenomena is almost

1 For this idea I am indebted to S. Dolev, whom I once observed analyzing a
quantum-mechanical experiment in terms of a certain interpretation which I
knew he was not partial to. To my inquiry he told me it has been his habit to
analyze a complex quantum process in terms of several competing interpreta-
tions, as each interpretation illuminates another facet of it. See also Chap. 5 by
Hartle.
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bound to illuminate some other conundrum, be it the origin of the uni-
verse [9], the nature of consciousness [10], or even something we are as
yet unable to conceive of.

Having said all that, it becomes soberingly clear why none of the interpre-
tations of quantum mechanics has won general acceptance in the physical
community. To be sure, physics would be very dull had these interpretations
not been proposed in the first place. They teased researchers’ minds and
stimulated experimentation and theorizing. Yet interpretations of quantum
mechanics – especially the most ingenious ones – might sometimes do a dis-
service to their proponents. They might give the impression that quantum
mechanics is the final word, and because they are not theories in themselves,
offering no predictions that differ from quantum theory proper, they are ir-
refutable. This is bound to inflict barren tranquility on an over-enthusiastic
adherent. Popper’s [11] legacy is very instrumental in this context, and can
be best appreciated when considering certain pseudo-sciences. Astrology, for
example, boasts enormous explanatory power and yet, being irrefutable, is
a conceptual ghost: It can never die, hence is not a living theory either. It
never really forbids anything, hence never makes any other possibility more
likely .

The lesson should not be lost on the quantum physicist. One should be
suspicious of a framework that, instead of trying to resolve contradictions,
embraces them with the aid of epistemological or methodological maneuvers,
no matter how brilliantly. Contradictions have always been the lifeblood of
scientific progress, and they compel us to engage upon ontological adventures.

Of course, “Good men must not obey laws too well” (R.W. Emerson),
and neither should scientists follow too strictly any guidelines in the search
for a new theory. In other words, let us remain loose enough to give Nature
ample opportunity to surprise us. Einstein openly advocated a certain degree
of looseness when he said that a scientist [12]:

. . . must appear to the systematic epistemologist as a type of un-
scrupulous opportunist: he appears as realist insofar as he seeks to
describe a world independent of the acts of perception; as idealist in-
sofar as he looks upon the concepts and theories as the free inventions
of the human spirit (not logically derivable from what is empirically
given); as positivist insofar as he considers his concepts and theories
justified only to the extent to which they furnish a logical representa-
tion of relations among sensory experiences. He may even appear as
Platonist or Pythagorean insofar as he considers the viewpoint of log-
ical simplicity as an indispensable and effective tool of his research.
(p. 684)

∗ ∗ ∗
Participating in this volume has been a huge privilege. Perhaps the sentiments
of all of us towards the subject of this volume can best be put in the words of
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Rabbi Tarfon (Ethics of the Fathers 2, 16): “It is not upon you to complete
the work, neither are you free to refrain from it.”
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2 Radically Quantum:
Liberation and Purification
from Classical Prejudice

Hans-Peter Dürr

A hundred years after Max Planck’s surprising interpretation of the puzzling
features (on the basis of classical physics) in the measured spectral distri-
bution of the black body radiation which initiated quantum mechanics, we
return in this book to the question: quo vadis quantum mechanics? Should
one really ask the question: where is quantum mechanics going? Or should
we not rather ask: where are we going with quantum mechanics? The former
skeptical question, which returns over and over again, reflects the obvious
irritation of many people in view of the surprising paradoxes of quantum me-
chanics, which are indeed irreconcilable with our macroscopically perceived
reality. But we may retort: So what? In the historical development of science,
we have often experienced the situation in which former theories had to be
modified because they proved to be valid only in a certain range of our experi-
ence. Regarding quantum physics, despite its uncontested empirical validity
in presently known physics, the numerous verifications of newly predicted
microscopic effects, and successful application in modern technologies, many
still feel quite uneasy about it and urge us to ‘improve’ this theory or even
to replace it altogether by something more familiar.

This frequently stated viewpoint takes us back to Albert Einstein’s posi-
tion in his famous controversy with Niels Bohr about 75 years ago. Although
honored with the Nobel Prize for his early contributions to quantum me-
chanics, Einstein considered these paradoxes unacceptable as a satisfactory
answer, in contrast to Niels Bohr and his young student Werner Heisenberg.
The latter, after numerous futile attempts to remove these oddities, finally
saw themselves cornered and forced to surrender, accepting the physically
strange consequences of the otherwise mathematically fully consistent new
mechanics. But their defeat led them to one of the greatest scientific dis-
coveries of the modern age: quantum theory turns out to be not simply a
paradigm shift in the sense of Thomas Kuhn, but does actually imply a revo-
lutionary change in our view of ‘reality’, compared to the commonly accepted
classical Cartesian–Newtonian reality, by rejecting its ontic character. Rather
than being based on interacting objects, ‘things’ that ‘exist’, establishing a
material reality (in Latin res means ‘thing’) the quantum reality (in German,
‘Wirklichkeit’ or actionality) is based on an immaterial and irreducible con-
nectedness, a ‘potentiality’ representing a holistic, inseparable, causally un-



8 Hans-Peter Dürr

determined, genuinely creative world with an infinite-valued multiple logic.
This, however, as can be demonstrated, constitutes no irreconcilable clash
with our present world view. The commonly employed and experimentally
established classical description is effectively recovered for most macroscopic
systems and therefore validates the applicability of the classical reality notion
in our familiar mesoscopic world.

From this viewpoint, quantum physics definitely provides a more general,
more comprehensive and richer theoretical framework than classical physics,
which only holds approximately under certain conditions in the limit of many
quanta. We may more appropriately call the ‘parts’ of the ‘Wirklichkeit’
‘wirks’ or ‘haps’ as minute happenings, or ‘acts’, as David Finkelstein [1]
calls them. Hence the paradoxes of the quantum world only arise if the no-
tions of the classical subsystem are inadequately extended to the superior
system. The superior system becomes apparent particularly in microphysics
(small numbers of ‘wirks’ or ‘haps’) and usually gets averaged out in meso-
and macroscopic systems involving many ‘wirks’. However, there may also be
some surprising consequences in our much larger mesoscopic world if quan-
tum features, by some intrinsic amplification mechanisms, manage to ‘surface’
and can thereby be observed and measured. In addition, it appears very likely
that quantum features do somehow relate to the phenomenon of life and the
spiritual dimension of our perception [2]. Because of its basic holistic struc-
ture, the quantum world offers a grand ‘fulcrum’, intimately connecting all
fields of human experience, and in particular those which are still considered
now as being completely disjoint and even mutually exclusive.

Hence I want to ask people who still have trouble accepting quantum
physics the question: what kind of theory do you envisage or seek? What kind
of theory would you like to advocate to replace quantum physics as a better
description of physical reality? What do you mean by a ‘better description’
or what do you perceive as particularly ‘bad’ about the quantum description?
What are the aspects you consider irreconcilable with macroscopic reality?

From my viewpoint there seem to be no basic problems with quantum
theory as such. This does not mean that we have answers to all questions
which can be asked. The problems lie more with interpretation. The question,
in fact, has to be asked in a different way and directed to ourselves: how can
we come to an arrangement with quantum mechanics so as to feel sufficiently
comfortable or even convinced?

I would like to outline my personal perspective and approach to this ques-
tion. Obviously quantum mechanics (QM) is still too limited. However, this
is not because of its ‘quantum’ aspects, but rather because of its reference
to ‘mechanics’, which only served historically as a starting point for the sur-
prising journey into quantum physics (QPh) and still plays an important
pedagogical role in this regard. It had to be and has been generalized to
a relativistically invariant theory, which automatically requires the consid-
eration of many-particle systems and quantum field theory (QFT). There
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are still a lot of open questions but no real contradictions [see for example
the Standard Model (SM) of particle physics]. The mathematical treatment
of quantum field theories, however, is still unsatisfactory because, with the
present mathematical tools, basic issues can only be superficially addressed.
The present limitation to quasilinear systems is too restrictive and actually
unjustified.

The formulation of a general, all-embracing quantum theory in terms of
a relativistically invariant quantum field theory has met a number of severe
difficulties in the past, which we have not been able to resolve, but only effec-
tively tame for a certain type of theory by some formal procedures (renormal-
ization). It seems to me that these difficulties are connected to the fact that
we are still sticking too close to the classical analogues: we start from classical
field theories which are subsequently ‘quantized’, evaluate them in a semi-
linear approximation (perturbation theory), and appropriately cleanse them
from irritating ‘divergencies’ by some subtraction procedures. The whole pro-
cedure only succeeds for sufficiently ‘soft’ interactions. A rather baroque but
up-to-now successful example is the present Standard Model. The concept
of spacetime-dependent fields, the priority of propagation over interaction,
the close correspondence between the constituent fields and observed ‘parti-
cles’ and their symmetry properties are still clear traces of our classical entry
and prejudice. A future ‘improved’ quantum theory, must therefore, in my
opinion, be more quantum rather than less, i.e., even more radical in its quan-
tum structure. In particular it should not start with classical features, e.g.,
presupposing a spacetime continuum as a given general background. This
‘classical’ space should ultimately arise as a sufficiently valid approximation
from a fundamental quantum algebra.

As a concrete example for such a more radical quantum approach, a rad-
ically unified nonlinear pure spinor theory will be sketched, the essential
features of which were introduced and developed over the period 1953–1983.
Viewed from the presently adopted unified quantum field theories, including
the Standard Model (SM), or the supersymmetric string theories, it appears
outrageously radical, but from our own point of view it should, because of
its field concept, be considered only as an intermediate step, although with
regard to our intuition and for our guidance, an indispensable step towards a
fully-fledged quantum formulation which ultimately employs only algebraic
algorithms.

2.1 The Need for a New Approach to Science
Indicated by Quantum Physics

2.1.1 General Considerations

Quantum physics is significantly different in structure from classical physics.
Classical physics presumes an ‘ontic structure’ of the world. It starts with the
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question: What is? What exists? It talks about ‘reality’ consisting primarily
of things, shaped material objects which can be distinctly localized in a 3-
dimensional space and change location and form in a 1-dimensional directed
time. For an explicit description we ask: what are things made of? In an
attempt to separate the time-varying features from the invariant matter, we
break ‘things’ up into ever smaller pieces, hoping to peel off their changing
form from an invariant local core, the formless matter, the atoms. The form
or ‘gestalt’ we interpret in terms of changing aggregates comprised of a large
multitude of these formless atoms, i.e., localizable ‘pure’ particles of matter
(‘pure’ in the sense of lacking any spatial form). The main characteristic of
this approach is the priority of timeless pure particles, localized independently
from each other at different space points and moving around unaware of each
other.

Only in second place, because of additionally introduced interactions be-
tween these particles (this actually involves the assumption of other qualities,
non-spatial ‘form’ features, like the electric charge of matter particles) do they
become ‘aware’ of each other and form a common system, where ‘the whole
is more than the sum of its parts’. This, however, can only be described in
terms of a joint system of particles if the interaction does not destroy the ‘in-
dividuality’ of the particles. The interaction, therefore, has to be sufficiently
weak, or in mathematical terms, the equations of dynamics must be quasilin-
ear (differential equations in time with small nonlinear, i.e., sufficiently soft
interaction terms) admitting a convergent perturbation expansion. General-
izing the many-particle system to a continuum of particle densities leads to
classical fields and partial differential equations describing their dynamics.

In QPh there are no ‘things’, but basically only connectedness. The ele-
ments are not ‘pure particles’ or classical fields but simply elements of con-
nectedness which we may call ‘wirks’ or ‘haps’. Numbers and functions of
numbers are replaced by operators and operator-valued functions. ‘Wirk-
lichkeit’ (or ‘actionality’) is no longer ‘reality’, but rather ‘potentiality’, a ca-
pability of manifesting itself as footprints in a material-energetic reality. The
question is not: What is?, but rather: What is going on? What is happen-
ing? [1]. The starting point should therefore be an algebra of operators obey-
ing the quantum commutation or anticommutation rules. Continous param-
eters, including time and space variables, should only show up in connection
with particular representations of these algebras. The formulation of quan-
tum field theories (QFT) in terms of dynamic equations or Lagrangians for
operator-fields or operator-valued functions of such continuous (spacetime)
parameters, will only occur as an effective, restrictedly valid approximation.
Interaction will be more fundamental than propagation in the following sense:
primarily, there is only interaction, a nonlinearity (an interacting of the field
with itself), and only on a second level do we find, as a consequence of this in-
teraction by a kind of a self-organization (constructive feedback), the effective
appearance of propagators of ‘particles’. These propagators will be charac-
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terized by certain numerical normalization factors and also contain certain
masses as softer terms. The ‘particles’ will be related to the empirically ob-
served particles with the various coupling constants in their interactions with
other particles being proportional to the inverse of the numerical propagation
normalization factors.

In fact, the appearance of a large number of numerical constants in mi-
crophysics, in terms of mass ratios of elementary particles and coupling con-
stants, was one of the main reasons why Werner Heisenberg in his first
attempt [3] to formulate a fundamental field theory (in 1950) insisted on
starting with a nonlinear theory of the non-renormalizable type. The non-
renormalizable character indicates that interaction at small distances domi-
nates propagation. As a consequence, the nonlinearity, a strong local inter-
action, provides for the possibility that dimensionless numbers can be gen-
erated by the dynamics. Heisenberg was familiar with this feature from his
very early research work for his dissertation in 1923 on the theory of (classi-
cal) turbulent motion of fluids, where such dimensionless numbers (like those
of Rayleigh and Reynold) result naturally from the nonlinear Navier–Stokes
equations. As another example, the quantum mechanics of a single electron in
the H atom produces infinite towers of stationary (or rather, quasi-stationary)
states, and as a consequence, a corresponding infinite number of numerical
energy ratios. Of course, it is exactly this close connection between relevant
non-trivial results and the still continuing inability to treat such nonlinear
problems successfully (as being non-renormalizable, i.e., no decoupling at
small distances and hence non-applicability of perturbation theory), that has
led to the broadly shared opinion that Heisenberg had definitely failed in his
quite novel and highly ambitious approach.

The main purpose of the present paper is to retrace the Heisenberg ap-
proach to a fundamental quantum theory of reality in terms of the non-
linear spinor field theory of elementary particles, which he started in 1950,
more than fifty years ago, and in which I actively participated for 25 years,
from 1958 to 1983. Indeed, I am still involved. From my present vantage
point, I consider the field theoretical formulation, as I mentioned before, as a
kind of intermediary step towards an ultimate comprehensive unified theory,
an in-between formulation which offers the possibility to establish approxi-
mation schemes, although perhaps only on a rather poor level (e.g., of the
Tamm–Dancoff or Bethe–Salpeter type) for actually calculating mass ratios
and coupling constants from basic principles. These considerations are not
only of historical value but offer, to my mind, the chance to point out again
the much more courageous and radical character of the approach suggested
by Heisenberg et al. for the formulation of a unified theory of matter than the
ones favored at present, with the Standard Model of elementary particles as
the most prominent example. Clearly, the Standard Model is very successful
in interpreting, or at least being without exception consistent with the ex-
tensive range of experimental data now available. Still, in the mind of most
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particle physicists, the SM could hardly be said to represent anything like a
‘final solution’ for the fundamental problems of the material world and its
dynamics.

To avoid misunderstandings at this point, let me state this more clearly.
We should not and we are not aiming at an ultimate ‘Weltformel’, as our own
approach was phrased by newspapers early in 1958. No! Quantum physics,
being non-ontic, excludes such a possibility altogether. It is an ‘open’, largely
undetermined theory. In this and many other points I fully agree with what
Henry Stapp has said on this issue [4]. But the present Standard Model
formulation, in our opinion, beyond this necessary openness and indetermi-
nation, has some limitations, in principle. It is more like what one might call
an ‘engineering model’, because, to define the theory uniquely, we have to
supply in an ad hoc manner numerous features concerning the character of
the dominant fields and also many dimensionless numbers (related to mass
ratios and coupling constants) without providing any satisfactory hint of their
origin. The ‘anthropic principle’ – i.e., suggesting that numbers are thrown in
arbitrarily by ‘God’ with the Big Bang at the beginning of the universe but
filtered as an ‘end of the pipe’ condition so to speak by the requirement of
coexistence of these specific numbers with the existence of the human being
as observer – is hardly a hint but more of a ‘poor man’s’ excuse.

Of course, there is nothing wrong with scientists being modest regarding
their actual capability and general claims to offer explantions for any and all
phenomena. But it appears unnecessarily fatalistic to use this as a starting
point. Anyway, I definitely prefer to compare models, like the SM, with a van
der Waals potential model in atomic physics, which allowed rather successful
approximations for calculating the spectra of the heavier atoms generated
by outer shell electrons by using effective classical van der Waals potentials
instead of the electric potential of the atomic nucleus shielded by the electrons
of the inner shells. Of course, the real breakthrough in QPh occurred much
earlier with the exact calculation of the simple hydrogen atom by Wolfgang
Pauli using operator algebra. The trouble repeating this success story for
the more general and more complicated problems of relativistic elementary
particle dynamics is that there does not seem to be any a nalogue of the
simple hydrogen atom, where we could explicitly detect and convincingly
isolate and extract the basic principles.

It may well be, however, that the basic principles are in fact already
known: they are the principles of quantum physics. Since physics in the old
meaning barely survives, we may just refer to it as the quantum principle.
The trouble we meet in quantum physics and the difficulties we still have in
understanding many features of it, e.g., in the context of the Standard Model,
may very well be connected with our hesitation to take quantum principles
really seriously. This is the reason why I have given this contribution the
rather challenging title: Radically Quantum.
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Before going into more detail, let me briefly indicate some features where
the classical prejudice is most visible in the presently favored approach.

2.1.2 Classical Egg Shells in Quantum Physics Today

In a way, present quantum physics still looks like a kind of formal deformation
of classical physics. We start from classical considerations with a classical
Lagrangian or Hamiltonian or the corresponding classical equations of dy-
namics. We then ‘quantize’ the complementary canonical variables according
to Heisenberg by replacing the classical variables by the corresponding oper-
ators obeying certain commutation rules consistent with the canonical theory
(replacing Poisson brackets by commutators or in a Grassmann algebra by
anticommutators). We limit calculations to cases which can (at least in prin-
ciple) be solved explicitly. We extend these models to ones where additional
interaction terms are included which can be handled as a small perturbation
using the perturbation theory expansions. The corresponding space repre-
sentation of the solutions leads to the Schrödinger wave equation. They are
classical field equations, however, for complex fields of space and time, in
contrast to the real classical fields. And there are new ones, without clas-
sical analogy, the spinor fields. These fields are again quantized (sometimes
misleadingly called second quantization) where spacetime remains a classical
background field, like the time parameter in quantum mechanics, on which
the quantum field ‘lives’.

In the case of interaction, the quantum field formulation is the only con-
sistent way to incorporate relativistic invariance. This is connected with the
possibility of pair creation and the severe consequence that the one-particle
sector is intimately coupled to the many-particle sectors. Only free field dy-
namics expressed in term of linear operator-valued field equations can be
solved exactly. More complicated field equations containing interaction terms
(non-linearities) can only be solved if the interaction is sufficiently ‘soft’ at
small distances (less dominant than the uncertainty fluctuations of the free
particle at small distances) and hence can be treated as a small perturbation
using the perturbation theory expansion as a valid approximation (super-
renormalizable or even to a certain extent renormalizable theories).

Spacetime in these field theories is like an external classical background
field. With its metric structure being intrinsically connected to the gravita-
tional field as formulated by Einstein’s general theory of relativity, it should
be quantized as well to avoid inconsistencies. To quantize by starting from
classical general relativity using the canonical procedure leads to a non-
renormalizable theory which does not justify perturbation expansion even
for an extremely weak coupling of the gravitational field to matter fields.
But there are other features which suggest a rather different approach for
incorporating gravitation into quantum theory. This will be discussed later.

Altogether the procedure which starts with the phenomenological parti-
cles, i.e., the particles which appear if they are far away from each other
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(asymptotic domain), and represents them by the corresponding local quan-
tum fields, which on the contrary, characterize the behavior at very small
distances, appears too luxurious (candidates to be cut off by Occam’s razor)
for the formulation of a fundamental theory. Such a theory should certainly
also be able to generate ‘particles’, which are not basic entities but rather
something like ‘bound states’ of a much smaller number of building-block
fields. The presently highly favored Standard Model is a hybrid model us-
ing as basic fields, firstly, fields related to phenomenologically established
particles, but also, secondly, other basic fields, like the quarks and the glu-
ons, which do not show up themselves as particles but only play the role of
constituent fields of compounds, related to other well-known particles, the
strongly interacting and heavy hadrons. String theory starts solely from con-
stituent constructs, strings, but again from the extreme classical end, with
generalizations of classical theories similar to general relativity where the
emphasis is on the geometric properties and we are guided by some highly
attractive mathematical properties. In this context, quantum theory will only
be grafted onto the classical formulation afterwards by the usual quantization
procedure. From my point of view, string theory is an extremely luxurious
starting point which leaves, as I see it, too much arbitrariness for selecting a
specially distinguished and plausible form for the fundamental theory.

2.2 Additive Unified Quantum Field Theories

2.2.1 General Remarks

Let me start by describing briefly the presently most favored unified field the-
ory models, which I call the additive unified quantum field theoretical models.
The AUQFT models started around 1961 in the wake of the ‘radically unified
quantum field theoretical models’, initiated essentially by Werner Heisenberg
in 1950 [5]. The latter theories, RUQFT, will be treated in the next section. In
fact, this short presentation with a description of their key consequences will
constitute the main purpose of this contribution. Although historically they
were devised later, I choose to start with the AUQFT models because they
include, in particular, the so-called Standard Model (SM), which appears to
be consistent with all the presently known experimental data.

The AUQFT models belong to the category of phenomenologically guided
field theoretical models, in the sense that they are closely constructed from
well-established subtheories connected with known particles or interactions.
They differ, however, in the way this additive patchwork is glued together
using general principles, mainly group theoretical considerations, to achieve
some kind of unification in order to minimize the number of arbitrary fudge
factors, like appropriate masses and coupling constants which are left un-
determined by these theories. Like ‘engineering models’, they are sufficently
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satisfactory for practical purposes, allowing detailed calculations and predic-
tions for experimental outcomes – and this is indispensable for establishing
sound theories – but they are barely acceptable as the final theoretical answer
to the very ambitious questions we expect to be answered by a fundamental
unified theory of matter, at least if we take the viewpoint of Albert Einstein,
as expressed in his autobiographical notes [6]:

Before I enter upon a critique of mechanics as the foundation of
physics, something of a broadly general nature will first have to be
said concerning the points of view according to which it is possible
to criticize physical theories at all.

The first point of view is obvious: the theory must not contradict
empirical facts. However evident this demand may in the first place
appear, its application turns out to be quite delicate. For it is often,
perhaps always, possible to adhere to a general theoretical foundation
by securing the adaption of the theory to the facts by means of arti-
ficial additional assumptions. In any case, however, this first point of
view is concerned with the confirmation of the theoretical foundation
by the available empirical facts.

The second point of view is not concerned with the relation to the
material of observation but with the premises of the theory itself, with
what may briefly but vaguely be characterized as the ‘naturalness’ or
‘logical simplicity’ of the premises (of the basic concepts and of the
relations between these which are taken as a basis). This point of
view, an exact formulation of which meets with great difficulties, has
played an important role in the selection and evaluation of theories
since time immemorial. The problem here is not simply one of a
kind of enumeration of the logically independent premises [. . . ], but
that of a kind of reciprocal weighing of incommensurable qualities.
Furthermore, among theories of equally ‘simple’ foundation that one
is to be taken as superior which most sharply delimits the qualities
of the system in the abstract (i.e., contains the most definite claims)
[. . . ].

The second point of view may briefly be characterized as con-
cerning itself with the ‘inner perfection’ of the theory, whereas the
first point of view refers to the ‘external confirmation’. The follow-
ing I reckon as also belonging to the ‘inner perfection’ of a theory:
We prize a theory more highly if, from the logical standpoint, it is
not the result of an arbitrary choice among theories which, among
themselves, are of equal value and analogously constructed.

One may argue, of course, whether this point of view should be regarded
as universally valid. Einstein himself only applied it ‘to such theories whose
object is the totality of all physical appearances’. On the basis of a more
pragmatic and positivistic attitude where functionality is predominant, many
scientists today actually believe that such an expectation is too idealistic in
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the Platonic sense and should be given up as antiquated. They may tend to
favor an anthropic principle according to which an apparent theoretical non-
uniqueness of possible world models is dramatically reduced to a very small
number of models which require, as a severe limitation, the compatibility
of the existence of the universe with the existence of homo sapiens sapiens
asking all these intricate questions. It is true that we should not be so arrogant
as to demand rules about how this universe should be constructed and run,
but I find it a rather easy and lazy attitude to discard or externalize such
fundamental questions right from the start. There is no question in my mind
that there will be no ‘world formula’ for the universe in the sense, as some
people imagine, giving us very precise and unique answers to all our questions.
In fact, quantum physics has taught us that the laws of nature are of a much
more general form than we ever expected or imagined, leaving enough room
for an infinite number of different solutions reflecting the tremendous diversity
of structures, forms and processes we observe around us.

To use a more limited but quite illustrative example for this situation, let
us look at the large number of light spectra of different atoms and molecules
with their complicated sequences of spectral lines and continua, which serve as
precise fingerprints for their existence and structure. There are long shelves of
books in our libraries with tables of the measured frequencies of the emitted
and absorbed light waves in these spectra. The ratio of these frequencies,
corresponding to ratios of energies of states, constitute a huge collection of
(dimensionless) numbers demanding to be explained by an appropriate theory
for atoms and molecules. These problems can be considered to be solved, in
principle, by quantum mechanics. But apart from a few very simple cases,
in particular the hydrogen atom, or the H+

2 molecule, and in a rather good
approximation for some higher atoms (replacing the atomic nucleus by an
effective van der Waals potential for the nucleus shielded by the electrons of
the inner shells), this has not actually been carried out explicitly. Nobody
is bothered by this because we have full confidence that, with the present
theory, this could be demonstrated to a satisfactory degree, if necessary.

The Standard Model of elementary particles could be regarded as a van
der Waals approximation to a perhaps much simpler basic theory. But we
do not know this, because in particle theory we have the disadvantage that
there is no simple example like the hydrogen atom to play around with.
But even without the existence of such a simple system where this can be
explicitly demonstrated, it may not be unreasonable to believe that there
does exist such a simple underlying theoretical structure. I would guess that,
even without knowledge of the H atom, scientists would not have suggested
an anthropic principle to explain the huge number of spectral lines or the
energy levels of the atoms, the differences of which relate to the spectral
lines. For the formulation of a theory, it was in this context important not
to cling to the large number of phenomenologically apparent spectral lines
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themselves, but to move conceptually one level below to the electrons, where
each is capable of generating an infinite number of eigenstates.

2.2.2 Phenomenologically Guided Field Theoretical Models

Elementary particle theories start from the concept of a classical particle
which in a relativistic quantum theory is represented via Heisenberg’s inter-
pretation of Bohr’s correspondence principle by an operator-valued quantum
field ψ(x) depending on a classical (c-number-type) spacetime position x. The
position space is important to define a local operator interaction by a multi-
linear or nonlinear product of local field operators · · ·ψn+1(x)·ψn(x) · · · . The
sequential operator products express a time-sequence of the operation (in our
mathematical convention, the later n+1 is to the left of the earlier n). Hence
time is actually represented twice although in a different form: firstly, in the
classical fashion as the 0 th component of x ≡ xµ, and secondly, algebraically,
as ‘bare time’ through an ordering parameter in the operator product. For a
free particle, the x-label has only secondary importance and is more conve-
niently replaced via Fourier transformation by the 4-momentum p, with the
restriction p2 = m2 relating to the rest mass of the particle. The free motion
is expressed by the kinetic term in the Lagrange–Hamilton formulation or
the propagator in the Feynman S-matrix expansion.

The phenomenological approach starts with phenomenologically known
and, in a theoretical description, asymptotically surviving (stable) particles,
and associates these with an appropriate tensor-type or spinor-type particle-
operator field depending on their intrinsic spin properties (integer: tensorial,
half-integer: spinorial). A practical difficulty arises over how to handle the
large number of quasi-stable particles which only travel a finite rather than
an asymptotically infinite distance before decaying. These decaying particles
are usually treated like stable particles in the first approximation. As a conse-
quence of the particle–wave duality, a virtual exchange of particles at smaller
distances generates interactions with a Yukawa-type potential e−r/R/(r/R),
with a range R that is inversely proportional to the mass of the virtually
exchanged particle. However, there is no one-to-one correlation between par-
ticle (asymptotic and on-energy-shell) and interaction (virtual and off-shell).
In fact, the concept of interaction is more general than that of particles. This
is evident for the massless fields. In particular the very prominent electro-
magnetic field has a non-particle infinite-range type interaction, the Coulomb
interaction, and a similar (but 4-fold) situation holds for the gravitational
field.

The phenomenologically guided field theoretical models were quite pop-
ular in the early 1960s, before the large number of rather short-lived strong
interaction particles (hadrons) were discovered. All of the then-known parti-
cles were treated as quasi-stable with electromagnetic and weak interaction,
to which a strong interaction was added later on, assumed to be mediated by
pions as the relevant force fields. For lack of appropriate tools, all interactions,
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irrespective of their actual strength, had to be treated in an unsatisfactory
manner as ‘sufficiently weak impacts’ by perturbation theory. This is hardly
a viable approach.

2.2.3 Symmetries of the Dynamics
and their Effective Up- and Downgrading

The invariance of the Lagrangian and the field equations (derived from the
Lagrangian according to the Hamilton principle as a functional extremum of
the total action) under certain symmetry transformations are of eminent dy-
namical importance because they lead, according to the Noether theorems, to
conservation laws for certain quantities in physical processes, the Lie genera-
tors of the dynamical symmetries. Local fields, in contrast to the asymptotic
particle fields, can be viewed as appropriate local parametrizations of the
symmetries of the fundamental dynamics.

There are global symmetries characterized by x-independent symmetry
transformations G, usually expressed in terms of Lie groups with a certain
number of real-valued Lie parameters. Some of these symmetries hold strictly
(for Lagrangians which are invariant under these symmetry transformations),
leading to exact conservation laws. But there are other symmetry transforma-
tions which are phenomenologically only approximately valid. There are also
the more general local symmetries or gauge-type symmetries, characterized
by symmetries G(loc), with x-dependent Lie parameters. In connection with
kinetic terms, they generate certain well-defined (gauge-type) interactions.

The cardinal question of particle physics relates, firstly, to the origin of
the particular set of symmetries of the field dynamics (the Lagrangian or the
corresponding field equations) exhibited phenomenologically, and, secondly,
to why some symmetries only hold approximately, indicating perhaps some
second step distortion by which originally perfect symmetries are ‘broken’ in
their phenomenological appearance.

The conservation laws of physical processes and the mass spectrum (mul-
tiplets) of the particles exhibit a rather complicated structure which at first
glance does not hint at a simple fundamental dynamics characterized by some
single high symmetry group. From their additive construction, reflecting this
in a straightforward combination of the various symmetries of the different
interactions (strong, electromagnetic, weak and gravitational), the AUQFT
models lead to a ‘stutter’ structure:

G = G1 ⊗G2 ⊗G3 ⊗G4 .

In particular the factor groups may be the same group or particular subgroups
thereof. Such a situation is well-known from the physics of the heavier atoms
with many electrons, which are arranged in different shells because of the
Pauli principle related to the anticommutativity of the spinor field opera-
tors. The electrons all move in the same rotational O(3)-symmetric Coulomb
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potential of the point-like nucleus (disregarding its spatial extension and its
spin). The fundamental symmetry group is just O(3) or the covering group
SU(2). [In the special Coulomb case, we even have the higher dynamical sym-
metry O(4).] If the electrons are considered to be approximately independent
of each other, then the basic symmetry group in the case of N electrons seems
to be inflated to the N -fold ‘stutter’ symmetry

G =
N⊗
1

Gn .

Here the symmetry inflation is caused by the assumed independence of the
N (electron) subsystems. This is, of course, a rather poor approximation be-
cause the electrons are all correlated by the antisymmetrization of the total
wave function of the electrons enforcing the Pauli principle, and in addition
are affected by their mutual electric Coulomb repulsion and their magnetic
dipole interactions connected with their spin properties. In fact, because of
the weak spin–spin and spin–orbit interactions, their approximately decou-
pled spins allow an even higher 2N -fold ‘stutter’ symmetry, which by taking
the various weak couplings into account step-by-step as perturbations, is then
consecutively broken down to the original basic SU(2) characterized by the
total angular momentum J .

To demonstrate explicitly the rather sophisticated approximate symmetry
structure [7], the lowest energy level structure of the 5-electron boron atom is
given in Figs. 2.1 and 2.2 according to the LS and jj coupling schemes. They
exhibit different in-between ‘broken’ higher symmetries related to subshell
occupations, subspin arrangements, seniority, etc. The altogether

(8
3

)
= 56

energy levels of the second (less than half-filled) atomic subshell eventually
split up into 12 energy levels which only have the degeneracy of the remain-
ing exact SU(2) symmetry group. It is interesting to observe that the fine
structure contains split doublets as well as singlets and split triplets.

The investigation of the spectrum of atoms hence gives another interest-
ing hint as to how symmetries can appear to be ‘broken’. In particular, there
is a well-established method for approximately calculating the lowest energy
states of higher atoms. In the so-called optical approximation, only a single
‘outermost’ electron is taken into account and considered to move in an ef-
fective classical van der Waals potential of the spherically symmetric nuclear
potential screened by the averaged cloud of inner (all but the outermost)
electrons. This effective screened potential will not in general be rotationally
symmetric and will thus exhibit orientation properties. The spin orientation
degeneracy of the energy states of the singled out (optical) electron will be
removed, imitating a breakdown of the basic rotational symmetry.

In the case of a quantum field theory which involves a virtually infinite
number of quanta, the above consideration relates to a certain arbitrariness
in separating a certain limited subsystem from the total infinite quantum
aggregation, referring to the particular system to be explicitly observed and
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analysed (similar to the optical electron of the atom), from the remaining,
still infinite quantum system, but treated approximately as a classical ‘back-
ground state’ (similar to the appropriatedly shielded van der Waals potential
in our atomic example). In quantum field theory this background state is
usually taken as the ‘vacuum’ or ‘ground state’, characterizing the ‘empty’
or ‘energetically lowest state’, and hence ‘stable state’. Mathematically, the
ground state defines the representation of the quantum field algebra in the
complex-valued infinite-dimensional linear state space, the Hilbert space. Dif-
ferent ground states define inequivalent representations of the algebra and
hence disjoint Hilbert spaces. Obviously, the theoretically introduced and
commonly used ‘vacuum’ or ‘ground state’ is a convenient artifact and serves
as an approximation for the real physical background for our observation,
which comprises the classical universe with all its galaxies, including the
immediate environment of our experiment and in particular the measuring
equipment and the observer, all defined in classical terms. Every measure-
ment leading to ‘facts’, e.g., a blackening of a photographic film, a water
droplet track (water condensation strip) of a charged particle in a Wilson
cloud chamber, establishes a different inequivalent representation. The sin-
gular change of the representation by the measurement is usually interpreted
as a discontinuous change, ‘a collapse of the wave function’ in the observed
system.

Of course, simulating the ‘background state’ by a vacuum only works if
the background is invariant under the symmetry groups of the fundamental
dynamics, in particular if it is invariant under the 10-parameter spacetime
Poincaré group. Due to the extreme weakness of gravitational forces and
the neutralization of electric forces by opposite charges, the external influ-
ences of distant objects can generally be neglected except for some explicit
nearby classical electric or magnetic force fields that are part of our measur-
ing equipment. Such classical force fields can, however, be part of the system
of observation, e.g., in the case of a ferromagnet where, due to quantum
exchange forces, the electron spins can line up to produce a near-classical
magnetic polarization M . This state can be used as the reference state, the
background state, which in this case will violate the full rotational invari-
ance, breaking the 3-parameter rotational symmetry down to a 1-parameter
rotational symmetry around the polarization axis. Different orientations of
the polarization M define different Hilbert spaces which are essentially or-
thogonal to each other, proportional to e−N with N the number of aligned
spins or magnetons, and become fully orthogonal (non-equivalent) in the limit
N →∞.

For infinite systems or field models, the asymmetric ground state cannot
even be rotated to an infinitesimally different orientation by (angular momen-
tum) operators defined in that Hilbert space. Only sub-infinitesimal rotations
∼ λ/L correspond to this space, relating to rotations of finite pieces of length
of order λ of the ferromagnet L. They can be interpreted as wavepackets of
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size λ of Bloch spin waves θ±(x) with energy E = �c/λ→ 0 with wavelength
λ→∞, relating to massless boson modes in a relativistic formulation. As a
consequence of the asymmetric background state, the whole tower of excited
states will also exhibit this asymmetry.

The idea of interpreting the appearance of broken symmetries as a strictly
valid fundamental symmetry but distorted by an asymmetric ground state,
was discussed by Heisenberg from the very beginning of his unified theory
in connection with isospin symmetry, broken by an isospin-polarized ground
state in analogy with the ferromagnet or antiferromagnet. In connection with
a unified theory of elementary particles, it was suggested in more general
terms in the well-known but unpublished preprint of Heisenberg and Pauli [8],
and in a more detailed paper by Dürr, Heisenberg, Mitter, Schlieder, and
Yamazaki [9], i.e., three and four years, respectively, earlier than the papers
by Goldstone [10] and Goldstone, Salam, Weinberg [11].

2.2.4 Standard Model

Within the AUQFT approach the Standard Model is essentially a phe-
nomenologically guided unified quantum field theory with, however, basic
modifications regarding the strong interactions and their corresponding par-
ticles (hadrons). These modifications were necessary to deal effectively with
the fast growing number of quasi-stable hadrons (short finite half-life), which
made it unreasonable to represent them all by genuine local fields. In fact,
many decayed in a very short time into longer-living hadrons and eventu-
ally stable hadrons, and it appeared more appropriate to consider them as
quasi-bound states or resonance states of their decay products. This sug-
gested an approach closer to the treatment of atoms and molecules, intro-
ducing a smaller set of constituent fields. However, group theoretical consid-
erations [12] suggested a new type of building block for hadrons: the quarks
and the gluons. They were no longer simply connected to phenomenologically
known particles or quasi-particles but were merely ‘local interaction field con-
structs’ representing certain basic symmetries similar to, but not identical to
the constituent fields already proposed by Heisenberg in 1950 and promoted
by the radically unified field theories, to be outlined in the next section. In
this sense the Standard Model is a hybrid model of the phenomenologically
guided field model augmented by the constituent-type-field concept.

The basic symmetry group GSM of the Standard Model is a rather baroque
‘stutter’ symmetry, reflecting its basic ‘additive’ phenomenological genesis:

GSM = U(1)⊗ U(1, loc)⊗ SU(2, loc)⊗ SU(3, loc)⊗ G′(?)⊗ G′′(?)
F ′ Y f c family gravity

,

with F ′, Y , f , c the fermion number, hypercharge, flavor (e.g., isospin for
the first family) and color properties. The majority of the groups are local
groups generating gauge interactions. The 3-fold family diversity is still not
satisfactorily incorporated and gravitation is left out.
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Excluding gravitation and possible field additions needed to resolve the
‘family’ puzzle, there are altogether 142 constituent fields in the Standard
Model, comprising 90 fermion fields and 52 boson fields. The fermion fields
consist of three equivalent families of 15 Weyl spinor fields and their an-
tiparticles each accounting for four 3-colored hadrons (a left-handed flavor
doublet and two right-handed flavor singlets) and three colorless leptons (a
left-handed flavor doublet and a right-handed flavor singlet). The general-
ized flavor refers to the up–down (isospin), charm–strange, and top–bottom
qualites, respectively, for the three families. The 52 = 4×(8+4)+2×2 boson
fields consist of an ‘isospin’ singlet, 8-colored, vector gauge field (gluon) and
an ‘isospin’ doublet, uncolored, scalar Higgs field and its antiparticles. Higgs
fields are required to generate the breaking of the isospin symmetry, or more
generally the flavor symmetries.

In trying to unify this theory further to a Grand Unified Theory (GUT),
there have been many attempts to get rid of the ‘stutter’ structure of the sym-
metry by embedding it into a higher symmetry (without taking into account
family triplication, etc.). There have been various proposals [13], e.g.,

Ggrand = U(1)⊗ SU(5, loc)
F fc

.

The 15 spinor fields can then be grouped into a 10-plet and 5-plet (although
mixed in helicity and fermion number) of SU(5, loc). The interaction is car-
ried by 24 vector gauge fields, and 24 + 5 Higgs fields would have to be in-
troduced to break the grand symmetry into flavor and color subsymmetries.
Obviously there will be a lot of superfluous and unaccounted-for fields.

It should be mentioned that the Standard Model and the speculative ex-
tended models require a particular mechanism to contain all ‘colored’ fields
in such a way that they never show up asymptotically. This may be a con-
sequence of the necessarily nonlinear interaction of non-Abelian gauge fields
preventing color charges from ever being pulled apart. But the mathematical
treatment is still quite unsatisfactory because it goes beyond a perturbation
theory approach. Also to break symmetries in a mathematically transparent
way, Lorentz-scalar Higgs fields have to be added in an ad hoc manner to
enforce the existence of the desired asymmetric ground state, not to mention
the large numbers of mass terms which cannot be deduced from the theory.

This may suffice to indicate that the present status of a ‘comprehensive
quantum theory of matter’ is far from being satisfactory. The open ques-
tions may not have a definite and rigorous answer, e.g., as in the case of
the anthropic principle. But it is not illegitimate to criticize the particular
approach, in particular to ask: why should reality be such as to allow re-
ductionist solutions, which depend on approximate linearizations? Because,
after all, quantum theory strongly emphasizes the fundamental dominance of
connectedness over separateness. It appears that we should turn the question
around. Rather than ask why existing ‘separated’ things come together to
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form various complicated compounds, we should make the opposite inquiry:
why does it happen that the intrinsic tight connectedness has the tendency
to favor processes of differentiation and ‘emancipation’ – arrangements loos-
ening connectedness and weakening interactions by appropriate mutual com-
pensation of forces in certain ‘regions’ (such as happens as a consequence
of repulsive forces between opposite charges in electrodynamics), or by the
‘repulsive’ exchange forces enforcing the Pauli exclusion of states, or quite
differently, by destructive interference – to create quasi-empty ‘in-betweens’,
and simulate a world consisting approximately of (sufficiently weakly inter-
acting) separate as-if-parts?

2.3 Radically Unified Field Theoretical Models

2.3.1 Historical Remarks

The occurrence of very different types and strengths of interactions is a very
interesting feature of matter dynamics and there were early efforts in science
to find some theoretical reasons for their particular existence and possibilities
for a common origin. Being very familar in our daily life with the phenomenon
of ‘weight’, an attraction of all matter by the earth, it was an impressive ‘uni-
fication of interactions’ by Isaac Newton to discover that the forces of celestial
motion – described by Johannes Kepler for the planetary system as planets
being attracted by the central sun – were caused by the same gravitational
force which made the apple drop to the ground. The electric and magnetic in-
teractions were combined to an electromagnetic interaction, also responsible
for the chemical forces which made solid matter appear as spatially extended
objects (res extensa of Descartes) and included later, as shown by Faraday
and Maxwell, the phenomenon of electromagnetic waves. The Maxwell equa-
tions allowed an extremely compact ‘unified’ theoretical description in terms
of an electromagnetic field generated by and interacting with electric charges
and currents. The field concept could be similarly extended to gravitational
interaction. Albert Einstein in his general theory of relativity [14] identified
the gravitational field with metric properties of the spacetime continuum
(curved pseudo-Euclidean geometry). Einstein [15] and Hermann Weyl [16]
attempted later to generate a comprehensive ‘unified theory’ by appropri-
ately incorporating electrodynamics into a generalized geometric structure,
without much success.

Quantum physics, however, put an end to this very promising approach
to a classical unified theory. Firstly, gravitation, the heart of the geometric
approach, proved rather recalcitrant as regards quantization, in contrast to
the electromagnetic field, but, secondly, two new interactions were discovered,
the weak interaction connected with radioactive decay, and more importantly,
the strong interactions relevant for atomic nuclei. With the discovery of the
strongly interacting π-meson, it appeared that strong interactions could be
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handled in a rather similar way to the electromagnetic one, with light quanta
being replaced by pions. This favored the additive approach to a quantum
field theory, as described in the last section. But due to stubborn inconsisten-
cies at small distances (divergency problems) in the marriage of quantization
and local interactions enforced by special relativity [17], the quantum field
theoretical approach caused great frustration and called for a basically novel
approach.

As a consequence, the majority of quantum physicists turned away from
local quantum field theories altogether and looked for an appropriate descrip-
tion in terms of a scattering-matrix theory. This starts from the experimen-
tally accessible asymptotically large distance region, where, in the case of
finite-range interactions, only free particles occur. The S-matrix theory was
developed by Heisenberg [18] in the mid-1940s as a kind of phenomenologi-
cal model for an elementary particle theory starting solely from ‘observable
quantities’. This approach proved very powerful by the observation that the
necessary condition of relativistic causality, represented in field theories by
the causal condition of ‘locality’, could be incorporated there in terms of
certain analyticity requirements for the scattering matrix.

Concerning the analyticity properties of the S-matrix theory, although
they are mathematically quite attractive and in many ways productive as
a substitute for the physically relevant local causality, Heisenberg felt that
this new tool was intuitively not very illuminating with regard to the dismal
behaviour at short distances. To avoid the obstinate divergence difficulties at
small distances, he therefore returned in the early 1950s to the quantum field
approach with the idea of postulating a fundamental length [3] indicating
a spacetime range within which quantum theory in the presently used form
would not be valid but had to be modified. This had two important con-
sequences. Firstly, the local constituent fields would not be identical to the
canonical fields appearing asymptotically on the periphery connected with
the observable particles. Secondly, the coupling constant characterizing the
interaction, a nonlinear term, would be proportional to a positive power of
the fundamental length, hence rendering the theory non-renormalizable in
the common terminology, i.e., not reducing to a free and hence canonical
field theory in the limit of short distances. However, the latter troublesome
consequence provided an interesting opportunity to start with a much smaller
number of constituent fields compared to the number of asymptotic particle-
like fields representing so-called bound states of the constituent fields. This
radically new approach opened the way to a ‘radically unified field theory’.
The price was non-renormalizability. Did this really represent an insurmount-
able barrier? Or was it on the contrary the key to a new type of solution?

I emphasize this point in order to demonstrate that these RUQFTs based
on non-particle-like constituent fields with possibly unusual (non-canonical)
properties, developed in the early 1950s by Heisenberg [19,20] were, and still
are actually more revolutionary in their basic approach than the AUQFT
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constructions, including the presently accepted Standard Model. In fact, the
non-canonical character (unusual transformation under dilatations) required
an indefinite metric in the state space (Nevanlinna space instead of a Hilbert
space) [19,20] familiar in the Gupta–Bleuler formulation of quantum electro-
dynamics and gravitation [21,22].

We should realize that, at the time of the conception of the RUQFT, al-
though only the hadronic charged π-mesons had been discovered [23], Heisen-
berg, experiencing the many-particle production in cosmic radiation show-
ers [24, 26, 27] clearly anticipated the later development of particle physics
into a physics with a very large number of strongly interacting particles. It
was only 14 years later with the work of Murray Gell-Mann [12] and others, as
a reaction to the ever increasing number of hadrons and after playing around
with an SU(3) and an 8-fold approach to resolve the problem of flavor mul-
tiplicity [28], that such non-particle-type constituent fields were introduced
into the AUQFT in the form of non-observable ‘color’ fields, the quarks and
gluons, changing the AUQFT into hybrid theories, as described in the last
section. Only the hadrons, in contrast to the non-hadrons, are treated in
the constituent field fashion. However, they still adhere to their canonical
behavior at the unobservable short distances, perhaps an unnecessary lux-
ury because this is only required for asymptotic fields to enable a unitary
S-matrix for the in- and out-states.

The further development of Heisenberg’s more fundamental RUQFT ap-
proach was hindered and later totally ignored because of the phenomenolog-
ically highly successful Standard Model which, however, aimed primarily at
a half-way manageable theory – convergent-renormalizable and hence acces-
sible at small distances by perturbation theory – rather than seeking a more
profound understanding of the phenomenologically exhibited dynamics and
its strange symmetry pattern. As was expected, at least from the RUQFT
point of view, a more profound insight into the basic dynamics would prove
rather difficult if one simply tried now to improve on the present Standard
Model. A more radical approach seems to be unavoidable.

But how radical should it be? New investigations along the lines of
RUQFT since the early 1980s seem to indicate that the necessary changes
to the familiar QFT may not be as severe as to require a dramatic modifica-
tion of the basic quantum principles (e.g., the introduction of a fundamental
length � indicating a spacetime region where the quantum principle is grossly
violated). Hence my goal in the present paper is not to compete with the SM
in its results, but rather to take a different path, which allows us to reach
what we believe is the heart of the problem: to establish from basic (mainly
group-theoretical) considerations a fundamental highly nonlinear quantum
field theory with a radically simple and unique structure which, under var-
ious more complicated conditions than hitherto assumed, permits approxi-
mate linearizations and can effectively lead to a ‘baroque’ phenomenological
field theory of the same type as the SM. In addition, this very simple and
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compact fundamental quantum theory may offer a glimpse of an even more
profound level: a purely algebraic description at the foundation which avoids
the spacetime-dependent fields altogether at the outset, but prepares their
effective appearance, relating them to operators parameterized by the orbits
of the fundamental Lie group.

2.3.2 Heisenberg–Pauli Nonlinear Spinor Theory

Observations and studies of the multiple-particle high-energy showers of cos-
mic rays convinced Heisenberg [17,24–26] that this could not be solely the re-
sult of many consecutive few-particle showers but must be indicative of many-
particle production at very small distances connected with a rather strong in-
teraction there. Hence it was rather unlikely that a fundamental particle the-
ory would be convergent-renormalizable or even super-renormalizable, reflect-
ing a free theory behavior. The divergencies in non-convergent-renormalizable
and non-renormalizable theories on the other hand should not be considered a
basic deficiency but simply a reflection of the fact that the canonical commu-
tation rules commonly applied for quantization are intimately connected with
the classical solutions of the free particle wave equation with a δ(x)-function
point source. For non-renormalizable theories the commutation relations are
affected by the short-range interactions and hence have to be changed ac-
cordingly [5, 39].

This led Heisenberg to suggest a quantum field theory based solely on a
single, massless anticommuting (4-component) Dirac spinor field ψ(x) as the
basic constituent field, coupled non-linearly to itself:

iγµ∂µψ(x) + �2Γψ(ψ̄Γψ) = 0 , (2.1)

rather analogously to the anharmonic oscillator in quantum mechanics. In
this case of a canonical field (mass or inverse length dimension dimψ = 3/2),
the coupling constant will have the dimension of a length-square �2 (or mass
dim = −2) which indicates the dominance of the interaction term over the
kinetic term, identifying the theory as non-renormalizable.

Pauli [29] noticed in 1957 that the neutrino equation

iγµ∂µψ = 0 (2.2)

is not only invariant under the U(1) phase transformation, but also with
regard to the extended 3-parameter group, the Pauli transformations

ψ → aψ + bγ5ψ̃ , |a|2 + |b|2 = 1 , ψ̃ ≡ C−1ψ̄t , (2.3)

which later on was shown by Gürsey [30] to be isomorphic to the SU(2)
isospin transformations. Together with the U(1) Touschek transformation [31]

ψ −→ eiαγ5ψ , (2.4)
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related to a fermion number F , this results in the group

G= U(2)= U(1)⊗ SU(2)
F I

(2.5)

as internal invariance group of the massless fermion equation. The surpris-
ing feature, however, was that this enlarged invariance group Gν could be
maintained by adding a nonlinear pseudovector self-interaction

iγµ∂µψ + �2γ5γ
µψ(ψ̄γ5γ

µψ) = 0 , (2.6)

leading to the Heisenberg–Pauli spinor equation in 1958 [8]. This result
seemed very interesting, firstly because the quartic interaction term could be
fixed uniquely, and secondly, because it automatically provided the isospin
group without the usual ad hoc doubling of the number of components of
the spinor field. Shortly afterwards this surprise was somewhat dampened by
the present author [32], with the discovery that the Heisenberg–Pauli equa-
tion can be simply interpreted as arising from an equation for a 2-component
Weyl spinor field χ and the usual doubling of components, written as χ, to
include isospin:

iσµ∂µχ + �2σµχ(χ∗σµχ) = 0 , (2.7)

where the uniqueness of the quartic term prevails after doubling (in the σ-
notation an isospin unit matrix is suppressed). Of course, The internal in-
variance group (2.5) does not suffice to embrace the empirical classification,
which at that time (1958) required at least two charge-type numbers and
two different fermion numbers. The electric charge was not identical with the
third component of the isospin I3 but

Q = I3 + Y (2.8)

contains in addition a hypercharge Y , which the theory (2.7) does not provide.
Similarly, the fermion number has to be augmented by the introduction of
an additional fermion-type number Λ such that baryon and lepton number
can be distinguished:

B = F + Λ , L = F − Λ . (2.9)

The difference of the non-provided quantum numbers, i.e.,

S = Y − Λ = Y − 1
2
(B − L) , (2.10)

corresponds empirically to the property ‘strangeness’, the only member of
the other flavor families known at the time. The corresponding larger internal
invariance group would then have the extended form
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G′ = U(1) ⊗ U(1) ⊗ U(1) ⊗ SU(2) ,
Y Λ F I

(2.11)

which, if basically incorporated into a spinor equation, would require a qua-
drupling of the spinor components to 16. Instead, at that time, the invariance
group suggested was

G′′ = U(1) ⊗ U(1) ⊗ SU(3) ,
Λ F flavor (2.12)

involving 12 components with fermion number doubling and extending the
isospin SU(2) group to a flavor SU(3), not to be confused with the present
color SU(3).

It was actually this question, how best to accommodate the additional
quantum numbers – we stuck to SU(2) flavor, whilst others favored a more
pragmatic approach by simply adding a sufficient number of new fields – that
led to the departure of the development that finally became the well-known
Standard Model. The main goal of RUQFT was different. From the point of
view of the radical approach, an increase in the number of basic constituent
fields was not an admissible procedure because it automatically destroyed the
uniqueness of the field equation, provided that no higher internal symmetries
like SU(3) and higher were enforced. It is noteworthy that even in the SM,
the SU(3) flavor group did not survive, although only by transferring the
group theoretical deficiencies by postulating the existence of three ‘families’,
the origin of which has remained a mystery.

The new mechanism for obtaining ‘additional’ symmetry groups was
viewed in our RUQFT approach as abandoning the requirement for the
‘ground state’ to be simply the ‘vacuum’, i.e., a representation of ‘empty’
or a state of pure ‘nothingness’, which, by definition, must have the prop-
erty of being unique and invariant under the full symmetry group of the
field dynamics. In fact, it was argued that the ground state should be con-
sidered as an effective ‘background state’ approximating everything ‘outside’
what is actually observed. In particular, the observed ‘broken’ isospin invari-
ance reflected by the non-degenerate isospin multiplets seemed to suggest an
asymmetric ‘iso-ferromagnetic’ or ‘anti-ferromagnetic’ type of polarisation of
the ground state, which arose, as in superconductivity, from a Bose–Einstein
condensation of isospinor–spinor pairs. Such an isospin-asymmetric ground
state has two consequences:

• The occurrence of zero-mass modes similar to the Bloch spin waves of the
ferro- and antiferromagnet, but here in the form of isospin-flip modes, or
in modern terminology, Goldstone modes connected with the asymmetry
of the ground state.

• The possibility of uncommon ‘dressings’ of the original bare constituent
fields and their ‘bound states’ forming the dressed particles to be identified
with the observed particles that may differ not only in their mass from
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their bare modes but also by properties carried by the ground state, i.e.,
isospin properties.

In the original RUQFT papers [9], it was suggested that isospin-Bloch waves
(zero-mass charged bosons) were eventually responsible for the appearance of
the massless photons assuming an anti-isoferromagnetic background structure
and neutral pairs of flip-up/flip-down modes to form photons [33]. This did
not prove to be very successful.

Surprisingly, the second aspect of the unusual dressings has never been
taken up in the quantum field theoretical models which dominate today, in-
cluding the SM. This feature allows the introduction of ‘isospin-frozen’ fields,
i.e., isospinor fields where the non-aligned part of the isospin is shielded by
an isospin-wave dressing. They are nonlinear representations of the SU(2)
[34–37]. These dressings were used to give meaning to the ‘spurion’ intro-
duced in 1956 by Wentzel [38] to generate strange baryons (Λ and Σ) from
nucleons. In this case the hypercharge is simply the remaining I3 charge of
a frozen isopinor. The linear and nonlinear representations of SU(2) cannot
transform into each other, and hence define different classes of particles which
are independently conserved. In addition, the dressings, as in the polaron
case, will not necessarily be local but may lead to a finite spatial extension
of the dressed particle (a soliton involving an infinite number of Bloch-wave
bosons), in contrast to the local constituent fields. This opens a completely
new way of looking at hadrons and also offers an opportunity to distinguish
the different flavor families.

The close connection between asymmetric ground states and the exis-
tence of zero-mass spinless modes, although in special cases well known be-
fore, was demonstrated in 1961 for the non-relativistic case by Goldstone [10]
and shortly later generalized to the relativistic case by Goldstone, Salam
and Weinberg [11]. The Goldstone particles can be imagined as localized
infinitesimal transformations that change the oriented ground state into an
off-direction infinitesimally over a finite region, which, if infinitely extended
(not localized and hence zero momentum), should not change the energy be-
cause of the formal energy degeneracy of different oriented states. The Gold-
stone modes are thus operator-valued Lie parameters of the broken symmetry
transformations.

The asymmetry of the ground state |Ω〉 can be expressed by the asym-
metry condition of the ground state expectation value

〈Ω|χ̃∗τ iχ|Ω〉 = const.× δi
3 (2.13)

of the isovector Higgs field χ̃∗τχ, a scalar pair of the constituent χ fields, in
fact, the only possible local Lorentz-invariant isovector field (aside from its
Hermitian conjugate) constructible from the χ. This allows the representation

χ̃∗(x)τ iχ(x) = exp
[
iϕ0(x) + iϕ3(x)

][
ϕ1(x)×+ϕ2(x)×

]
χ̃∗(x)τ 3χ(x) ,

(2.14)
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with ϕ1,2(x) the two Goldstone fields of the isospin transformations, and
ϕ0(x) an additional Goldstone field connected with the additional asymme-
try of the ground state as exhibited by the non-Hermitian condition (2.13)
with regard to the F -phase transformation. The latter implies the possibility
for a freezing of the fermion number F by appropriate dressings and offers
the opportunity to generate the new quantum number Λ introduced ad hoc
in (2.9).

I will not go into a detailed discussion of the calculation of the vari-
ous ‘bound’ states of the constituent fields, which was extensively described
and treated in earlier papers [9, 39–41]. To succeed in producing finite re-
sults for masses and coupling constants, an effective change (averaging over
an essential singularity) of the quantization rule was necessary, involving a
cutoff of the divergent 2-point function at small distances |x| ≤ � (univer-
sal length) and applying the New–Tamm–Dancoff approximation method for
calculating the masses of the nucleons and mesons. The simplest mesons
consisted of the isoscalar and isovector Lorentz pseudoscalars and Lorentz-
vector mesons generated from the S-bound state of the urfield/anti-urfield
pairs χ∗χ, χ∗τχ, χ∗σµχ, χ∗σµτχ phenomenologically connected to the η,
π, ω and ρ and this at a time (1958) when only the π mesons were known.
The mass of the η meson was correctly predicted relative to the π mass. A
calculation of the Sommerfeld fine-structure constant was also attempted [42].

Numerical results could, however, only be obtained by using the rather
crude cutoff procedure which had the serious consequence that the metric of
the quantum-mechanical Hilbert space was no longer positive definite (Nevan-
linna space). Therefore states with negative norm (ghost states) in principle
could not be avoided, leading to a non-unitary S-matrix and violation of the
probability interpretation of the wave functions. Details and many references
can be found in Heisenberg’s book [47].

Many interesting attempts were made using various dressing mechanisms
to construct effective fields and interactions which could simulate the fields
of the SM, mainly concentrating on the electromagnetic–weak interactions,
but also including the difficult task of obtaining some understanding of the
strong interaction and its apparent color SU(3) quality [43–46].

I will restrict myself here to considerations concerning the symmetry
group structure. The main weakness of the Heisenberg–Pauli spinor the-
ory seemed to be connected to overshooting the effective regularization of
the interaction to the extent that it was treated in practical calculations
like a super-renormalizable theory where a coupling constant of mass di-
mension rather than of length dimension provided the ad hoc assumed basic
length scale. This caused difficulties in generating gauge-invariant interac-
tions, in particular electrodynamics from ‘bound state’ considerations. How-
ever, gauge-invariant interactions proved to be of decisive importance in the
SM. On the other hand, gauge invariance (i.e., invariance under x-dependent
symmetry transformations) is directly linked to the equal importance of the
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kinetic and the interaction term, indicating the absence of an explicit length
parameter (universal length) at the outset and hence requiring an invariance
under scale transformations. This requirement leads to an even more radical
formulation of the RUQFT, which will be sketched in the next section.

2.3.3 Gauge-Invariant and General Spacetime-Invariant
Nonlinear Spinor Theory

To establish a gauge-invariant pure nonlinear spinor theory in the context
of the RUQFT approach requires that gauge fields should not be added ad
hoc but rather generated from the constituent spinor field, the urfield. This
necessarily means that no spacetime derivatives, and hence no kinetic term
for the urfield can occur in the basic Lagrangian or the corresponding field
equation. The Lagrangian should only contain an ‘interaction’ term, a purely
nonlinear expression of the constituent fields. It should be appreciated at
this point that, because of the anticommuting property (Grassmann algebra)
of the operator fields χ and χ∗, the number of their local products is ex-
tremely limited. The Pauli exclusion principle limits their local clustering, so
to speak, and restricts them to just one mode at each x-point. Because of the
4 components of the field χ and also 4 for their Hermitian conjugates χ∗,
the maximum local product will be an octonic expression, which also exhibits
the maximum symmetry. This suggests [48, 49] starting with the maximally
symmetrical action

S =
∫

d4x
√
−gL(x) , (2.15)

with the ultralocal Lagrangian (density)

√
−gL(x) = − 1

N
: χχχχχ∗χ∗χ∗χ∗ : (x) = − 1

24N
: det(χχ∗) : (x) ,

(2.16)

constructed from the 4-component, anticommuting, non-Hermitian isospinor–
spinor field χ(x) �= χ∗(x) (‘urfield’):

χ ≡ χα(x) , α = 1, 2, 3, 4 , (2.17)

where N is an appropriate normalization factor. Such a self-interaction term
was already considered in 1977 by Heinrich Saller [50].

This Lagrangian is ‘ultralocal’ in a more extended sense than used ear-
lier by Klauder [51], that it lives solely on separate spacetime points and
hence, prima facie, cannot generate interaction but only self-action, i.e., no
dialogues but merely monologues. This, however, only holds in a classical
interpretation of the fields. In the case of quantum fields, the products of the
quantum fields become singular as a consequence of the quantization condi-
tion. These singularities have to be subtracted from the local product by a
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regularization procedure, a Wick product prescription, which is indicated by
the (still undefined) double-dots : : . This implies an infinitesimal nonlocality
which can generate effective derivative terms for various local operators con-
structed from χ and χ∗ and therefore corresponding effective kinetic terms
in the Lagrangian and propagators. In particular, in the case of spontaneous
symmetry breaking, there should appear Goldstone modes with ‘soft’ kinetic
terms which disappear in the limit of small distances.

To secure scale-invariance of the action S, the urfield must be given the
mass (or inverse length) dimension

dimχ(x) = dimχ∗(x) =
1
2

, (2.18)

i.e., transform under scale transformations as

χ −→ eη/2χ , (2.19)

which is subcanonical as compared to the canonical dimension dimψ = 3/2
of physical spinor fields ψ corresponding to ψ∗ψ being a 3-space density.

To specify the Wick finite-part product : : , we postulate for the point-
split χ(x+)χ∗(x−) product the formal Laurent expansion in terms of the
(timelike) split-vector ξ (with x± = x ± ξ/2) and in accordance with the
dimension assignment (2.18):

χα(x+)χ∗
β̇
(x−) =

i
2π

N̄
ξµ

ξ2 hµ

αβ̇
(x) + Vαβ̇(x, ξ) , (2.20)

with the first term explicitly exhibiting the singular part ∼ ξ−1. This can
also be expressed by the condition

hµ

αβ̇
(x) =

1
N̄

lim
ξ→0

ξµχα(x+)χ∗
β̇
(x−) �= 0 . (2.21)

Hence the finite, ξ-independent Lagrangian (2.16) can now be cast into the
more transparent form

√
−gL(x) = − 1

N
lim
ξ→0

X(x+)X∗(x−)

= − 1
24× 8N

lim
ξ→0

∂
ξ

2∂
ξ

2ξ2ξ2[X(x+)X∗(x−)] . (2.22)

The action (2.15) is formally invariant under the huge 47-parameter or re-
spectively, the x-dependent parameter function (‘local’ or gauge) symmetry
group

Gmax = D(1, loc)⊗ SL(4, R, loc)⊗ U(1, loc)⊗ SL(4, C, loc)
hybrid external internal

, (2.23)

which contains:
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• the external volume-conserving 15-parameter special linear transforma-
tions in the d = 4-dimensional spacetime manifold corresponding, in the
x-dependent form, to the volume-conserving transformations of general
relativity;

• the internal 1-parameter phase transformation for a fermion number F
and the 30-parameter linear complex transformations of the 2n = 4
spinor components (n = number of Weyl fields), ultimately interpreted
as isospinor–spinor components;

• the 1-parameter hybrid internal–external dilations acting on the coordi-
nate differentials as well as on the urfields according to the specification
(2.19) under the condition d = 2n.

The Lagrangian even exhibits other symmetries. We can establish an invari-
ance under spacetime translations and the general ‘local’ conformal transfor-
mations [50,52,53] and also an N = 2 supersymmetry [54].

The invariance of the action under the corresponding extended x-
dependent transformations is, of course, a consequence of the formal com-
plete separateness of all spacetime points. It is only because of the ‘softening’
of the ‘ultra-locality’ by the : : regularization prescription connected with
the quantum character of the urfields without destroying this local invariance
that the local invariance with regard to the internal groups now acquires the
non-trivial meaning of a ‘gauge’ group. This implies that all derivatives which
are effectively generated from the ‘softening’ of the nonlinear term now ap-
pear automatically as ‘covariant’ derivatives involving compensating vector
gauge fields, which must be constructs from the urfields. In particular, we
immediately realize [55] that the finite-part isovector–vector field

Aµ(x) =
1
2

: χ∗σµτχ : (x) , (2.24)

under x-dependent isospin transformations

χ(x) −→ eτ ·ϕ(x)/2χ(x) =
[
1 +

1
2
τ · ϕ(x) + · · ·

]
χ(x) , (2.25)

automatically shows the inhomogeneous behavior

Aµ(x)→ eϕ(x)×Aµ(x) + ∂µϕ(x) = Aµ(x) + ϕ(x)×Aµ(x) + ∂µϕ(x) + · · · ,
(2.26)

which always occurs in the combination of a covariant derivative

Dµ ≡ ∂µ +
i
2
τ · Aµ . (2.27)

However, the huge symmetry group (2.23) is not realized for the quantum field
theory because of the smaller symmetry of the quantization condition of the
fields under the following requirement for the anticommutator (suppressing
a unit isospin matrix in the notation):
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lim
ξ→0
{χα(x+)χ∗

β̇
(x−)} = −Im

N̄

2π

ξµ

ξ2 − ε(ξ0)
hµ

αβ̇
(x)

= N̄hµ

αβ̇
(x)ξµε(ξ0)δ(ξ2)

= −N̄ |ξ0|δ(ξ2
0) = const. (2.28)

This quantization condition can also be phrased as a condition for the ground
state, viz.,

〈Ω | hµ

αβ̇
(x) | Ω〉 = δµ

mσ̄m
αβ̇

. (2.29)

This states that h(x)µ

αβ̇
is essentially the mixed tetrad tensor related to the

metric tensor in the usual way, and is required to contain the Minkowski flat
space metric as exhibited by the most singular part of (2.28).

The quantization condition (2.28) induces a tremendous breaking of the
maximum group (2.23) down to the 11-parameter stability group of the (as-
sumed) translationally invariant ground state:

GΩ = D(1) ⊗ SO(3, 1) ⊗ U(1)⊗ SU(2)
hybrid hybrid Lorentz internal

, (2.30)

giving rise to 47−11 = 36 Goldstone modes connected with the 36-parameter
coset

G

GΩ
=

SL(4, R)
SO(3, 1)

⊗ SL(4, C)
SL(2, C)

⊗ SU(2) . (2.31)

In contrast to the usual examples of a condensate caused by a Higgs boson
field, no mass scale is established in our case on this first level of symmetry-
breaking. It is rather the Planck constant � (not explicitly written) that is
responsible. The connection between spacetime properties and spin degrees
of freedom, investigated by many [56–58], is thus enforced by quantization;
or the other way around, quantization provides the foundation for such a
parameter space.

It is actually interesting to observe that the symmetry breakdown con-
dition for the mixed tensor hµ

αβ̇
enforces a fixed ‘spin–orbit’ coupling, which

is the 4-dimensional analogue of a J = 2 (S-triplet/P -wave). It imprints
a Minkowski metric ηik, natural to the spin algebra (σiσ̄k), on the space-
time manifold. The 9 Goldstone excitations of this condensate characterize
local deviations from the flat Minkowski metric and relate to the 9 (volume
conserving) degrees of freedom of the usual 10 components of the gravita-
tional field or the metric tensor with fixed determinant. Hence the ground
state has some similarity with the B-phase of supercooled 3He [59], in which
a 2P2 configuration with total spin J = 2 occurs in such a way that, in
the corresponding spontaneous breakdown of the orbital and spin symmetry
(SBSOS), only the relative orientation of orbital and spin direction gets fixed
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(pseudo-isotropy). The excitations of the relative orbital-spin (Goldstone) vi-
brating modes, the spin-nematic waves of the condensate, correspond to the
gravitational degrees of freedom in our case.

The 21 Goldstone modes connected with the broken internal symmetries
related to the coset SL(4, C)/SU(2) will not really show up because they are
absorbed by the corresponding vector gauge fields (Anderson–Higgs mecha-
nism) [60,61] which are also generated, and will eventually give rise to massive
vector particles.

In addition to this ‘hard’ symmetry breaking, we can imagine additional
‘soft’ breakings taking into account additional terms of the operators in a
ξ-expansion ∼ m2ξξ, m4ξξξξ, etc. In analogy with the usual symmetry-
breaking mechanism, e.g., in the case of the phase transformation symmetry
U(1) or the isospin symmetry SU(2) as indicated in (2.13), they would then
produce corresponding kinetic terms. It should be noticed in this context
that the scalar bilinear forms : χ(x)χ(x) : and : χ∗(x)χ∗(x) : do not actually
require : : regularization because the anticommutator of like fields vanishes.

In a similar way additional terms ∼M2ξξ on the right-hand side of (2.20)
in Vαβ̇(x, ξ) would give rise to a general covariant kinetic term for the gravita-
tional field ∼ M2 with the important consequence that, in comparison with
the interaction term, a gravitational coupling constant ∼ 1/M2 ∼ �2Planck
would naturally occur. This means that M should be identified with the
huge gravitational mass

M = �−1
Planck = 1.22× 1019 GeV . (2.32)

The explicit evaluation of the Lagrangian (2.22) produces the various deriva-
tive forms connected to kinetic terms and derivative couplings. They are
rather numerous and are given elsewhere [49]. The leading term is a third-
derivative expression,

L(x) =
2π2

N̄
: χ∗ i

2

3

σ
←→
∂
←→
∂2 χ : (x) + · · · , (2.33)

with the normalization factor N = N̄4/96π2, where we have suppressed the
gauge fields which augment the derivatives to the covariant expressions.

The corresponding Green’s function or propagator depicts a ‘double pole’
in momentum space instead of the common single pole for a particle:

G(p) ∼ N̄
σ̄ · p
(p2)2

, (2.34)

which correctly reflects the anticommutator rules for a fermion of subcanoni-
cal dimension 1/2. The double pole describes a ‘dipole ghost’, treated exten-
sively by Heisenberg in 1957 [20] and refers to unphysical states of zero norm
and therefore zero probability.

If a softer mass term ∼ M2 appears in the expansion of V [x, ξ] in (2.20)
then this double pole may be pulled apart to positive and negative norm
contributions:
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G(p) ∼ N̄
σ̄ · p

p2(p2 ±M2)
= ±N̄

σ̄ · p
M2

(
1
p2 −

1
p2 ±M2

)
, (2.35)

which looks like a regular neutrino propagator with a momentum cutoff at
the mass M , e.g., like the huge gravitational mass (2.32) mentioned above.
If the minus sign occurs, the second term will correspond to a negative norm
(ghost) fermion of mass M (if N̄ = −1 is chosen).

I will not go into further details here. It can be demonstrated [49] that
essentially all the effective local fields of the Standard Model can be generated
from the urfield. This is easily imagined if we consider different groupings of
the octonic interaction:

Interaction term χ∗χ∗χ∗χ∗χχχχ

Higgs analog Φ∗Φ∗ΦΦ ∼ (χ∗χ∗)(χ∗χ∗)(χχ)(χχ)
Fermion–gauge ψ∗Aψ ∼ (χ∗χ∗χ∗)(χ∗χ)(χχχ)
Higgs–gauge Φ∗AAΦ ∼ (χ∗χ∗)(χ∗χ)(χ∗χ)(χχ)

(2.36)

and the possible kinetic terms

Fermions χ∗∂∂∂χ ψ∗∂ψ M2χ∗∂χ

Higgs ∂Φ∗∂Φ m2Φ∗Φ
Gauge ∂A∂A AA∂A AAAA

Goldstone m2∂ϕ∂ϕ M2∂h∂h

(2.37)

with the effective fields

Canonical fermions dim = 3/2 left : ψ = χχχ right : ψ′ = χ∗χχ

Canonical bosons dim = 1 Φ = χ∗χ A = χ∗χ
Goldstone fields dim = 0 ϕ± v gµν hµ

αβ̇

(2.38)

An important feature are the Goldstone dressings arising from the combined
symmetry breakdown of the isospin group and the fermion number phase
transformation. The Goldstone degrees of freedom can be formally accentu-
ated by writing the urfield as

χα(x) = exp
{

i
2
[ϕ+(x)τ− + ϕ−(x)τ+]

}
exp
{

i
2
[ϕ0(x) + ϕ3τ

3(x)]
}

χ
−

(x)

= s3
α(x)v3(x)χ

−
(x) . (2.39)

Here s3
α(ϕ±) is a transmutator I1,2,3 → I3 = Y , freezing the isospin into

the third direction, the hypercharge Y (now like an isoscalar) with only local
deviations as expressed by the Goldstone modes ϕ±(x). Furthermore, v3(ϕ0)
is a transmutator tying the I3 to the fermion number to enforce F − I3 = 0.
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Formally s(x) acts like a local isospinor with an additional frozen charge Y =
1/2. It has the properties of Wentzel’s spurion [34,38]. v(x) is a local isocalar
field with F = −Y = 1/2. As a consequence there will be numerous additional
effective local fields resulting from different dressings of the constituent field
constructs. The electric charge Q of the (asymptotically emerging) dressed
particles will only result from their isospin degree of freedom:

Q = (I3)total = (I3)field + (I3)dressing , (2.40)

and the same holds for the relevant fermion number

F = Ftotal = (F )field + (F )dressing . (2.41)

Different dressings, involving an infinite number of Goldstone modes, should
represent a highly effective barrier for transitions and hence should give rise
to a large number of fermion-number-type conservation laws. As mentioned
earlier, this may not only be the key to obtaining independent conservation
for baryon and lepton numbers, but it may also offer a hint for the existence of
the different flavor families. The left-handed leptons of canonical dim = 3/2,
the neutrino–electron doublet, may be straightforwardly constructed as a
dressed triple field

ψL ∼ vχχχ , F = 2 , Y = −1
2

, (2.42)

and a right-handed isoscalar field arises by involving an anti-field

ψ′
L ∼ v3sχχχ∗ , F = 2 , Y = −1

2
, (2.43)

offering with (2.42) the possibility to establish a massive electron. The right-
handed nucleons, the proton–neutron doublet, on the other hand, may have
the structure

ψN ∼ v∗χχχ , F = 1 , Y = +
1
2

. (2.44)

They may be regarded as a composition of three quarks q ∼ (v∗)1/3χ, a
very artificial construction. It would rather suggest dealing instead with a
4-component system with three fermions, each of only half a charge being
embedded into a fourth partner, a smeared out (F = −1/2, Q = +1/2)
Goldstone halo, or an extended soliton-type bag. This may all sound strange,
but there is at this stage no indicator for establishing an SU(3) color symme-
try. Hence, this still represents a serious weakness in the present theory. Many
attempts were made to remedy the situation but none proved satisfactory,
in particular regarding the apparent high validity of SU(3) color invariance
demonstrated by experiments. Nevertheless, I believe we should not give up
searching for an adequate solution of the color aspect within our framework.
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To my mind, the dressing mechanism is very important and has shown
many interesting features [43–46] which have hardly drawn much attention
up to now and hence have not been looked at in more detail by others. A
comparison with atomic physics, for example, as indicated by the boron ex-
ample (Figs. 2.1 and 2.2), shows very clearly how in many-fermion systems
the energy term system (analogous to the particle spectrum) exhibits approx-
imately valid new symmetries, which are very remote from the symmetries
of the underlying dynamics of the constituents. In particular SU(n) symme-
tries, with n the number of the coexisting electrons in a shell or subshell, play
an important role because of their antisymmetrization (permutation group).

The importance of the dressing aspect related to the phenomenon of spon-
taneous symmetry breakdown and its formulation by Bose–Einstein conden-
sation with the occurrence of zero-mass Goldstone modes and hence the pos-
sibility of small energy deformations has recently drawn a lot of attention [63]
connected with new quantum technologies, and specifically regarding quan-
tum computers, and it has even reached the popular press [62]. Indeed, this
may be another indication that, beyond the appearance of the gapless ex-
citations in a Bose–Einstein condensate in terms of the massless Goldstone
modes, there will be, in general, a high spatial deformation instability or
sensibility connected with the possibility of low-energy Goldstone clusters of
finite extensions or, if interactions are appropriately taken into account, even
of localized ‘bound states’ of such clusters. These may serve as traps for spino-
rial field configurations leading to soliton-type bags for fermions (dressings)
as required to explain the spatial extension of hadrons without employing
the usually assumed gluon fields. Such traps effectively suppress transitions
between fermion configurations which otherwise appear to be allowed on the
basis of non-gauge-type fermion number conservation. Hence the still myste-
rious high asymmetry of the universe regarding baryon number B and lepton
number L, may not actually be related to a PC-violation but rather to an
incorrect assignment of B and L to the basic (fermion number) U(1) sym-
metry.

It is quite cumbersome to pull out the physically interesting aspects ex-
plicitly from the constituent field dynamics represented by the Lagrangian,
as explicitly demonstrated in [48,49], and in particular to calculate numerical
mass ratios and coupling constants explicitly. We should not be surprised that
this ‘dynamical map’ [64,65] from local to asymptotic expressions or bare to
dressed fields will be and must necessarily be very complicated. It has been
demonstrated in simpler cases how this can be done in a very rough way,
but better methods should certainly be developed. Phenomenologically more
accessible formulations may be obtained by introducing effective local fields
through appropriate constraints using the Lagrange multiplier approach.

Although the suggested formulation of our basic theory [66–68] may still
be very far from being called a robust theory or even a theory at all, let me
finish with some general remarks about how we might go even further in our
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attempts to be radically quantum. This will be a highly speculative journey
but may encourage new thinking and serve to open new vistas.

Our Lagrangian has still some ad hoc basic features which, from our
radical point of view, require further probing. One is the introduction of a
4-dimensional spacetime as a parameter background for our description; the
other is the reason for using a 4-component non-Hermitian spinor field instead
of the simpler 2-component field, or even something else. There is no ques-
tion that a spinor field has tremendous advantages over other fields to serve
as a constituent field. This is obvious (half-spin, anticommutativity). The
spacetime continuum we have chosen as background with an approximately
Minkowskian pseudo-Euclidean metric structure gives the ‘time’ dimension a
different role than the three ‘space’ dimensions. But this background is simply
a continuous 4-fold label (similar to the index α of the spinor) for the ‘octonic
spinor field cluster’ which defines the Lagrangian, or better, the Lagrangian
density or the basic ‘building block’. It is just an enumeration of ‘more of
the same’ and, in fact, an infinite number of these clusters. The action is just
the total sum or, if really considered continuous, an integral over all these
‘octonic stars’. The ‘time’ plays an important role, because we use it to give
meaning to an order in the definition of the Wick product. The Wick product
prescription is based on a time-ordering definition for the fields regarded as
operators connecting the time sequence with the consecutive multiplication
from the left, defining a time arrow (the ‘earlier’ is always to the right of the
‘later’). The operator character of the spinor is essential and is reflected in
the anticommutativity of its products. We can characterize this Grassmann
property by step operators a, a† ,

a =
(

0 0
1 0

)
, a† =

(
0 1
0 0

)
, (2.45)

satisfying the anticommutation rules

{a, a} = {a†, a†} = 0 , {a, a†} = 1 . (2.46)

These step operators describe possible changes in a 2-state system, e.g., of
‘nonexistence’ and ‘existence’. Then with the time-arrow interpretation it
gets the meaning

a† = (not to be) −→ (to be) = creation operator ,
a = (not to be)←− (to be) = annihilation operator .

(2.47)

I consider this relationship to be rather profound in the sense that the op-
eration obtains the meaning of a directed process in a parameter sequence
which we call time.

The 4-component constituent spinor χα (on one x-point) now relates to
four independent pairs of such step operators a, a†. The question now arises:
why do we need a doubled Weyl spinor χ and not simply χ? What is the
reason for the isospin?
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In our formulation, the isospin definitely played a secondary role in com-
parison with the spin, which is closely connected to the spacetime metric. But
the isospin doubling nonetheless proved essential in defining an octonic prod-
uct. Maximally, a single Weyl spinor allows only a quartic product as used in
the Heisenberg–Pauli equation (2.6). But this is not actually the case because
χα is non-Hermitian and hence χ∗

β̇
can be connected with other pairs b, b†.

This can be readily seen if we restrict ourselves to a single Weyl spinor χα,
which as usual allows the introduction of a1, a2, b1, b2 and a†

1, a
†
1, b

†
1, b

†
2 with

indices 1, 2 referring to the spin up/down components of the Weyl spinor
(helicity). This does indeed admit a non-vanishing octonic product:

a†
1a

†
2b

†
1b

†
2a1a2b1b2 . (2.48)

Why does this work? We have dissociated the usual connection between the
fermion number F and helicity. Perhaps the old Pauli definition of the 4-
component spinor as a Majorana–Dirac spinor may after all be more ap-
propriate, with the important addition now, that the Majorana condition
ψ = γ5ψ

C no longer holds for the operators. This would imply that the basic
8-parameter symmetry group

GL(2, C) = D(1)(η0)⊗
SL(2, C)
SU(2)

(η)⊗ U(1)(α0)⊗ SU(2)(α) (2.49)

could perhaps suffice.
The orbits of the non-compact dilatation group and the coset depending

on the parameters (η0, η) applied to a positive or negative timelike vector
fill the forward and backward light cones, respectively. For fixed η0, we ob-
tain the 3-dimensional space on a hyperbola. For η0 → −∞, this shrinks
back to the light cone. Only in this limit are the positive and negative light
cones connected at the origin. This suggests identifying the ad hoc intro-
duced spacetime continuum on which the octonic spinor stars are spread out
with the 4-parameter space of the non-compact part of the GL(2, C) group.
The octonic spinor star consists of four annihilation beams entering from
the backward light cone, and four creation beams emerging into the forward
light cone, with both 4-beams not quite touching at the origin because of the
regularization of the self-action.

It is tempting to connect the evolution of the cosmos with a steady in-
crease in the dilatation parameter η0, starting at minus infinity at the origin
and sweeping step by step over the whole future cone, enlarging the number
of spinor stars along the 3-space hyerbola, which will look more and more like
our familiar infinite spacetime continuum. The Planck length �Planck may per-
haps be connected with the ‘minimum time’ of the creation and annihilation
processes inherent in the basic step operators, i.e., if interpreted according to

a · a† + a† · a =⇒ 1√
�

[
a

(
+

�

2

)
a†
(
− �

2

)
+ a†

(
+

�

2

)
a

(
− �

2

)]
, (2.50)
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where the factor in front prepares for dimχ = 1/2 under dilatations. However,
because of the scale invariance of the dynamics, the Planck length will only
show up at longer distances in the form of logarithmic mass terms, or in
softer terms connected with spontaneous symmetry breakdowns.

In a way, the cosmos would resemble a huge, continuously growing, parallel
closely-linked computer system with software based on the 8-fold general
linear transformations in a 2-dimensional complex space GL(2, C) instead
of the (0,1)-bit of our present computers. However, because of the basically
creative elements and the infinitely open logic, the quantum cosmos, in stark
contrast to our fully determined computer, would be essentially open to the
future, and hence would correspond more closely to what in our limited meso-
world we experience as being ‘fully alive’.
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3 Quantum Physics as a Science of Information

Časlav Brukner and Anton Zeilinger

There are at least three different ways in which quantum physics is connected
with the concept of information. One is the relationship between quantum in-
terference and knowledge. This was at the very heart of the early debates con-
cerning the meaning of quantum mechanics, most notably the Bohr–Einstein
dialogue [1]. That debate concerned the problem which occurred when quan-
tum mechanics came up against the hitherto accepted notion that physics
must describe reality as directly as possible and in an unambiguous and
complete way. The debate was resolved by the Copenhagen interpretation in
the most radical, conceptually challenging and foresightful manner, although
for many physicists today, the Copenhagen interpretation is still conceptually
unacceptable.

The second connection between quantum physics and information was the
discovery in the early 1990s that quantum concepts could be used for com-
munication and for processing information in completely novel ways. These
include such topics as quantum cryptography, quantum teleportation and
quantum computation [2].

The third connection between quantum physics and information has been
emerging gradually over the last few years with the conceptual groundwork
for this connection going back to the works of von Weizsaecker [3] and
Wheeler [4]. It is the notion that information is the basic concept of quantum
physics itself. That is, quantum physics is only indirectly a science of reality
but more immediately a science of knowledge.

The present paper will touch upon all three connections between quantum
physics and information.

3.1 Information and Quantum Interference

The connection between quantum interference and information is best illus-
trated by the double slit experiment (Fig. 3.1). This experiment already poses
the challenging question: Does quantum mechanics describe reality or infor-
mation? If we briefly consider the experiment with electrons – under what
conditions do interference fringes arise at the observation plane?

Such fringes can easily be understood on the basis of interference of waves
passing through both slits. Yet, as soon as we perform the experiment with
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Fig. 3.1. Double slit experiment. The figure is taken from Bohr’s article “Discussion
with Einstein on epistemological problems in atomic physics” [1]. There Bohr writes:
“This point is of great logical consequence, since it is only the circumstance that
we are presented with a choice of either tracing the path of a particle or observing
interference effects, which allows us to escape from the paradoxical necessity of
concluding that the behaviour of an electron or a photon should depend on the
presence of a slit in the diaphragm through which it could be proved not to pass.
We have here to do with a typical example of how the complementary phenomena
appear under mutually exclusive experimental arrangements and are just faced with
the impossibility, in the analysis of quantum effects, of drawing any sharp separation
between an independent behaviour of atomic objects and their interaction with
the measuring instruments which serve to define the conditions under which the
phenomena occur”

single particles, as has been done with photons, electrons, neutrons, atoms
and molecules, the question arises: How does an individual particle which,
one would naturally expect, has to pass through either slit, know whether
or not the other slit is open? Richard Feynman [5] wrote for the double-slit
experiment: “In reality, it contains the only mystery.” The modern Copen-
hagen way to talk about these questions is to assume that it only makes
sense to talk about a property of a system if one actually cares to determine
it or if at least the possibility for determining it exists. Or, in an even more
modern way, the interference fringes arise if and only if there is no possibil-
ity, not even in principle, to determine which path the particle took. And,
most importantly, it is not relevant whether or not we care to take note of
that information. All that is necessary is whether or not the information is
present somewhere in the universe. Only if such information is not present
do interference fringes occur.

Indeed, the most interesting situations arise if the path information is
present at some point in time, but deleted or erased in an irrevocable way later
on. Then, as soon as that information is irrevocably deleted, the interference
fringes can occur again. Here, it is important to note that the mere diffusion
of the information into larger systems, maybe even as large as the whole
universe, is not enough to destroy the information. As long as it is there,
no matter how well hidden or how dispersed, the interference fringes cannot
occur.
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Fig. 3.2. Two mutually complementary arrangements of the Heisenberg micro-
scope. A photon is scattered from an electron and then enters the Heisenberg mi-
croscope. If a detector (or an observation screen) is placed in the imaging plane of
the Heisenberg microscope lens, it can reveal the path the electron takes through
the slit assembly, which therefore cannot show an interference pattern, assuming
that it passes through an interferometer. On the other hand, if the detector is placed
in the focal plane of the lens, it projects the state of the electron into a momentum
eigenstate which cannot reveal any position information and therefore no informa-
tion about which slit the electron has passed through. Interference fringes may thus
occur

This feature is most interestingly shown in a gedanken experiment where
one combines the famous Heisenberg microscope with an electron double slit
experiment.

We consider an electron interferometer where we may, if we decide to do
so, determine the path the electron takes. This is done by scattering photons
from the electrons passing through the double slit assembly. Clearly, these
photons can be used to determine the path the electrons take by finding out
in which slit they have been scattered (assuming that their wavelength is
short enough). The simplest way to determine that position of scattering is
to use the Heisenberg microscope as shown in Fig. 3.2. One can simply put a
position-sensitive photon detector into the image plane and then, depending
on where one observes the photon, one knows the path taken by the electrons.
Therefore, no interference fringes can occur in that situation.

One might say now that one could simply not determine the position by
not putting a photon detector into the image plane. Then one does not obtain
information about the path taken, and one might be tempted to argue that in-
terference fringes should occur. Yet the scattered photons nevertheless carry
away the information about where they have been scattered and the path
taken could be determined at an arbitrary time. Therefore, even if one does
not care to read out this information, interference fringes should not arise.
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Indeed, one could imagine that someone in a distant galaxy, equipped with
very advanced technology, collects enough of the probability wave of the pho-
ton scattered and is thus able to determine the path taken. Therefore, even
if one does not look at the scattered photon, no interference fringes should
arise for the electron as long as the photon carries the path information.

In order to obtain interference fringes, one has to erase the information
carried by the photon in an irrevocable way. That can best be done by de-
tecting the photon, not in the image plane, but in the focal plane of the lens.
Recalling the basic concept of Fourier optics, we realize that a point in the
focal plane of a lens corresponds to an incoming momentum (or direction) on
the other side of the lens. Thus it follows that registration of the photon in
the focal plane projects the state of the scattered photon onto a momentum
eigenstate which does not contain any position information. Therefore, once
the photon is registered in the focal plane, all position information is gone
and the corresponding electron interferes with itself.

This experiment has actually been realized, not using an electron and a
photon, but using two photons exploiting the notion of entanglement [6,7]. In
this experiment (Fig. 3.3), one creates pairs of momentum entangled photons.
One of the two photons plays the role of the electron and passes through a
double slit assembly. That photon is registered behind the double slit at the
double slit detector. The other photon plays the role of the scattered photon
in the Heisenberg microscope experiment. It passes through the Heisenberg
lens and then to the Heisenberg detector. Because of the strong entanglement
between the two photons, the photon passing through the double slit does
not show any interference pattern. In fact, the photon passing through the
Heisenberg lens can be used to determine the path taken by the photon
passing through the double slit. This is done by placing the detector in the
image plane of the lens.

Alternatively, if one places the Heisenberg detector in the focal plane, the
incoming photon and therefore also the entangled photon are both projected
onto momentum eigenstates and the double slit interference fringes arise for
photons observed in coincidence with a registration at the Heisenberg detector
(see Figs. 3.3 and 3.4).

In this experiment, we also notice an interesting and elegant feature, viz.,
the low count rate. The peak count rate in the double slit pattern in Fig. 3.4
is about 120 photons in 60 seconds. This means that it is absolutely beyond
doubt that the interference pattern is built up individual photon by individual
photon.

These experiments can be seen as a confirmation of the viewpoint that it
does not make sense to assign any property to a physical system irrespective
of observation. In our case, the property as to whether the photon passing the
double slit assembly can be seen as a particle or as a wave depends on what
happens to the first photon. And this may actually occur at a time after the
photon passing through the double slit assembly has already been registered!
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Fig. 3.3. Double slit experiment for a photon of an entangled pair [6, 7]. A pair
of momentum-entangled photons is produced in the crystal by type-I parametric
down-conversion. One of the photons enters the Heisenberg microscope and is de-
tected by the Heisenberg detector placed behind the Heisenberg lens. (It plays the
role of the γ-quantum in the standard Heisenberg microscope experiment.) The
other photon enters the double slit assembly and is detected by the double slit de-
tector. (It plays the role of the electron.) If the Heisenberg detector is placed in the
imaging plane of the lens, it can reveal the path the other photon takes through
the slit assembly, which therefore cannot show interference. Alternatively, if the
Heisenberg detector is placed in the focal plane of the lens, it projects the state of
the other photon into a momentum eigenstate which cannot reveal any information
about the slit the photon passes through. This photon therefore exhibits an inter-
ference pattern in coincidence with the registration of the other photon in the focal
plane of the Heisenberg lens

One might view this as a nice corroboration of Niels Bohr’s famous dictum:
“No phenomenon is a phenomenon unless it is an observed phenomenon.”

These experiments also shed interesting light on the role of the observer
with respect to reality. We note that it is the experimentalist who chooses
the apparatus. The experimentalist, in our case Birgit, decides whether to
put the detector into the focal plane or, say, into the image plane. That
way, she determines which property of the system, wave or particle, can
be reality. We might thus conclude that the experimentalist choosing the
apparatus determines which physical quantity, i.e., quality, can be reality.
In that sense, the experimentalist’s choice is constitutive of the universe.
However, the specific outcome here, which of the two slits the particle passes
through in one case or where on the observation plane it arrives in the other,
cannot be influenced by her. That way, Nature avoids complete controllability
by the observer.
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Fig. 3.4. Two mutually exclusive patterns registered by the double slit detector
placed behind the double slit assembly (Fig. 3.3) as a function of its lateral posi-
tion. The graphs show counts registered by that detector in coincidence with the
registration at the Heisenberg detector if it is placed in the imaging plane of the
lens (upper) and if it is placed in the focal plane of the lens (lower). Only in the
latter case do the counts exhibit an interference pattern as the observation at the
Heisenberg detector does not reveal the path the photon takes through the double
slit assembly. Note the low intensity which indicates that the interference pattern
is built up by individual photons, one at a time

3.2 Towards a Quantum Information Technology

Unexpectedly for many, experiments motivated by fundamental and philo-
sophical concerns have led to novel concepts for processing information.
Quantum communication and quantum computation are the two areas where
such new protocols in information technology have been developed over the
last few years [2]. Interestingly, these new concepts and protocols rely on
three fundamental notions. These are:

• the randomness of the individual measurement outcome,
• quantum complementarity,
• quantum entanglement.

A scheme which uses all three concepts together is entanglement-based quan-
tum cryptography [8]. Let us therefore briefly discuss the essential point of
the protocol without going into too much detail.

Let us assume that Alice and Bob share the entangled state of two qubits
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Original: (a)

XOR XOR
Bitwise Bitwise

Encrypted: (b)

Alice's Key Bob's Key

Decrypted: (c)

Fig. 3.5. Encryption of an image of the Venus of Willendorf in the experimental
realization of quantum cryptography [11]. The image is encrypted by Alice via
bitwise XOR operation with her key. She transmits the encrypted image (b) to
Bob via the computer network. Bob decrypts the image with his key, resulting in
(c), which shows only a few errors due to the remaining bit errors in the keys

|ψ〉 =
1√
2

(
|0〉A|0〉B + |1〉A|1〉B

)
. (3.1)

Here a qubit is a two-state quantum system, the base states being denoted
as |0〉 and |1〉 corresponding to the bit values 0 and 1, respectively. The state
(3.1) is one of the maximally entangled (Bell) states [9]. The qubit A is held
by Alice and qubit B by Bob after they have been produced somehow in
the entangled state. It is now evident that, if Alice and Bob both perform
measurements in the

{
|0〉, |1〉

}
basis, they will obtain the same random result

0 or 1 on their qubits. Hence, after having measured many pairs, the two arrive
at identical sequences of random numbers. These numbers can be used as keys
to encode information. It has been known since Vernam [10] that such keys are
secure under two conditions: firstly, that they are used only once (one-time-
pad) and secondly, that they are completely random. The procedure to detect
an eavesdropper is to switch randomly between two bases, the computational
one
{
|0〉, |1〉

}
and the complementary one, often also referred to as conjugate:

|0′〉 =
1√
2

(
|0〉 − |1〉

)
, |1′〉 =

1√
2

(
|0〉+ |1〉

)
. (3.2)

In the conjugate basis the entangled photon has the same mathematical form
as (3.1). Alice and Bob will switch randomly and independently between the
two bases. Evidently they obtain the same bit value whenever they happen
to have the same basis. An eavesdropper, Eve, somewhere on the line has to
guess which basis Alice and Bob chose. Clearly, her guess will fail frequently.
On the other hand, if she tries to eavesdrop, e.g., by interacting her qubits
with those of Alice and/or Bob, this will necessarily induce errors between
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the results of Alice and Bob that can easily be detected by them. Therefore
she can easily be detected by checking the errors established between the
results of Alice and Bob. Finally, using the well-established procedure, Alice
and Bob can both arrive at the identical and secure random bit sequence that
can be used as a key to encrypt information. For more details and various
protocols, we refer the reader to the literature [2].

The first experimental realization [11] used polarization-encoded qubits
with the simple identification |0〉 = |H〉 and |1〉 = |V 〉, where H and V denote
a horizontally and a vertically polarized photon, respectively (see Fig. 3.5).

Fig. 3.6. Scheme for entanglement swapping, i.e., the teleportation of entangle-
ment. Two pairs of entangled qubits 0–1 and 2–3 are produced by two Einstein–
Podolsky–Rosen (EPR) sources. One qubit from each of the pairs is sent to two
separated observers, say qubit 0 is sent to Alice and qubit 3 to Bob. The other
qubits 1 and 2 from each pair become entangled through a Bell-state measurement,
whereby qubits 0 and 3 also become entangled. This requires the entangled qubits
0 and 3 neither to come from a common source nor to have interacted in the past

Another protocol utilizing all three fundamental concepts, randomness,
complementarity, and entanglement, is quantum teleportation [12,13], where
one can transfer the quantum state of one system to another over arbitrary
distances without physically transferring the system itself. The most interest-
ing realization of quantum teleportation occurs when an entangled state itself
is teleported, also called entanglement swapping [14,15]. In this experiment,
as shown schematically in Fig. 3.6, one starts with two entangled pairs of
qubits and performs a Bell-state measurement on one qubit from each pair.
That way, the other two qubits, no matter how far they might be separated
from each other, become entangled even though they share no common past.
This protocol is conceptually very interesting, as it can be viewed as quantum
teleportation of qubits which do not even have their own well-defined state.
This is because an entangled qubit itself can only be described by a mixed
density matrix. In a recent experiment [16], it has been possible to perform
the Bell-state measurement with sufficient quality for the two outer, newly
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entangled photons to become so highly entangled that the Bell inequality was
violated. We might mention that such schemes may be of importance in fu-
ture long-distance quantum communication protocols involving, for example,
quantum repeaters [17].

There are many other applications of fundamental quantum concepts in
new information technology protocols. These include, most notably, quantum
computation, which is seen by many, including the present authors, as the
future, albeit maybe long-term, of computation.

3.3 Quantum Physics as a Science of Information

The various debates about the conceptual significance of quantum mechanics
can to a large extent be seen as a debate about what quantum physics refers
to. Does it refer to reality directly or does it refer to (our) knowledge, and
therefore to information? If quantum physics refers to reality, which reality
is it? Is it the reality which appears to us, or is it a more complicated reality,
like the one alluded to in the many-worlds interpretation?

We suggest that significant inspiration can be obtained from Niels Bohr,
who, for example, according to Aage Petersen liked to say [18]: “There is no
quantum world. There is only an abstract quantum physical description. It is
wrong to think that the task of physics is to find out how Nature is. Physics
concerns what we can say about Nature.”

To us, it is thus suggestive that knowledge is the central concept of quan-
tum physics. In modern language, knowledge can be equated with informa-
tion. Therefore, one needs first a proper measure of information. One might
be tempted to use Shannon’s measure

I = −
∑

i

pi log pi , (3.3)

where pi is the probability of sign i occurring in a sequence. Yet it turns out
that Shannon’s measure is not adequate to describe the knowledge gained in
an individual quantum experiment [19]. This feature can be understood in
various ways. The most central one is this: the fact that the Shannon measure
of information contains the logarithm is related to the postulate that the
information gained in a series of observations of different properties must be
independent of the specific sequence in which the properties are read out.
Clearly, such a requirement is no longer valid in quantum mechanics, unless
the properties are commuting, which is in general an exception. So what
is needed is a measure of information which accounts for complementarity
and describes the total information obtainable in a complete set of quantum
experiments. We have suggested elsewhere [20] that the most appropriate
measure of information is

I =
∑

i

pipi , (3.4)
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which may be viewed as the sum of the individual probabilities weighed by
these probabilities themselves. The total information content Itotal of a quan-
tum system is then obtained as a sum of individual measures of information
Ij [of the type given in (3.4)] over a complete set of maximally mutually
complementary observables (indexed by j)

Itotal =
∑

j

Ij =
∑

j

∑
i

pijpij . (3.5)

Here pij denotes the probability of observing the i th outcome of the j th
observable.

The notion of mutually complementary observables may need to be ex-
plained further. A famous example is given by the three spin components of
a spin-1/2 particle taken along three directions orthogonal in space (not to
be confused with orthogonal quantum states). From an operational point of
view, two variables A and B are maximally mutually complementary if the
knowledge of one completely precludes any knowledge of the other. In the
case of spin, if A represents the spin along the z-direction, then B might
represent the spin along any direction orthogonal to z in space. It is a well
known feature that if the spin along z is well defined, the spin along these
other directions is maximally undefined. To come back to our example, the
sum

∑
j in (3.5) in the case of a spin-1/2 particle has to be taken along any

three spatially orthogonal directions, i.e., j = x, y, z.
It has not escaped our attention that (3.5) can be put onto a nicely visu-

alizable foundation if one defines an information space spanned by mutually
complementary observables [26]. Then Itotal just represents the square of the
length of a vector in that information space when the square of the length of
individual components is just given by Ij .

If, as we have suggested above, quantum physics is about information,
then we have to ask ourselves what we mean by a quantum system. It is
then imperative to avoid assigning any variant of naive classical objectivity
to quantum states [21]. Rather it is then natural to assume that the quantum
system is just the notion to which the probabilities in (3.4) and (3.5) refer,
and no more. The notion of an independently existing reality thus becomes
void.

We might therefore ask how much information a quantum system might
carry, stressing again that by ‘carry’ we just refer to the total amount of
information and not to the objective existence of any subject actually carrying
the information.

It is obvious that a large system, being our mental representative of the
information characterizing it, carries a lot of information, i.e., a great many
bits. Then how does that amount of information scale with the size of the
object? It is very suggestive to assume that the smaller a system, the less
information it carries. One may even consider the amount of information
carried by a system as defining its size. Basically, we postulate that:
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1. the amount of information carried by any system is finite,
2. the amount of information is lesser the smaller the system.

These assumptions may be supported by referring to Feynman [22]: “It always
bothers me that, according to the laws as we understand them today, it takes
a computing machine an infinite number of logical operations to figure out
what goes on in no matter how tiny a region of space, and no matter how
tiny a region of time. How can all that be going on in that tiny space? Why
should it take an infinite amount of logic to figure out what one tiny piece
of space/time is going to do?” Evidently, Feynman’s problem is solved if the
‘tiny piece of spacetime’ only contains a finite amount of information, and
the less, the smaller the piece is.

We arrive at a natural limit when a system only represents one bit of
information. Once that is achieved, the system can only represent the yes/no
answer to one question. If the system is asked another question, the answer
by necessity has to be random. Thus, randomness is a fundamental feature
of our world [23,24]. This, we suggest, also provides a natural foundation for
complementarity. Consider, for example, a simple two-path interferometer as
shown in Fig. 3.7.

Fig. 3.7. Two-path interferometer. The source emits coherent waves of which two
beams are selected and incident on the beam-splitter. Each of the two beams has
the same amplitude for being transmitted or reflected at the beam-splitter, and the
outgoing beams are thus coherent superpositions of the incoming ones

As is well known, in such an interferometer, we can prepare the state such
that either the path |a〉 or the path |b〉 is taken by a particle. In that case, the
trajectory after the semi-reflecting beam-splitter is completely random, or,
in other words, detectors I or II will each register the particle with the same
probability of 50%. On the other hand, we can prepare the state in a coherent
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superposition of |a〉 and |b〉 in such a way that, by adjusting the relative
phase, the particle ends up in detector I with certainty. In other words, in
the outgoing beam leading to detector I, constructive interference happens
and destructive interference in the outgoing beam II. The observation of
the path the particle takes inside the interferometer and the observation
of the interference are examples of two maximally mutually complementary
observations.

This behaviour can be understood very simply on the basis of our most
elementary quantum system carrying just one bit of information. It is then up
to the experimentalist to decide whether she wants to prepare the system in
such a way that the single bit of information is used to completely determine
the path, a binary variable, in which case no information is left to determine
the fate of the particle after the beam-splitter. Then the outcome, i.e., which
detector, I or II, fires, must be completely random. Alternatively, the ex-
perimentalist can prepare the system such that the single bit of information
defines which detector fires, i.e., the interference, in which case the path is
completely undefined. Evidently, intermediate cases are possible, where both
path information and interference are each partly defined.

We note that we are thus led to a natural explanation of quantum com-
plementarity. Our measure of information defined in (3.5) also provides a
perfect measure for the intermediate cases, where the path is partially de-
fined and also interference is obtained only with partial visibility, so that
their information contents sum to a total of one bit [25].

Concluding this chapter, we note that using our approach, we were able to
explain some other important features of quantum mechanics, most notably
Malus’ law [26], which describes the cosine dependence of the probability
upon the angle between the measurement direction and the direction along
which the spin is well defined. We were also able to obtain a natural under-
standing of entanglement [27]. For example, if one considers entanglement
of two spin-1/2 particles, one has two elementary systems in our sense, and
thus two available bits of information. These two bits can be used to encode
properties of the individual particles themselves, which is basically classical
coding. On the other hand, the two bits can be completely used up to fully
define only joint information, that is, information about how possible mea-
surement results on the particles relate to each other. If done in this way, one
automatically obtains the four Bell states. Then one obtains a natural basis
for Schrödinger’s definition of entanglement [28]. Finally, we note that, using
our approach, we were able to derive the Liouville equation describing the
quantum evolution in time of a two-state system [26].

Clearly, a number of important questions remain open. Of these, we men-
tion here two. The first refers to continuous variables. The problem there
is that with continuous variables, one has in principle an infinite number of
complementary observables. One might tackle this question by generalizing
the definition of (3.4) to infinite sets. This, while mathematically possible,
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leads to conceptually difficult situations. The conceptual problem is in our
view related to the fact that we wish to define all notions on operationally
verifiable bases or foundations, that is, on foundations which can be verified
directly in experiment. It is obvious that an infinite number of complemen-
tary observables can never be realized in experiment. In our opinion, it is
therefore suggestive that the concept of an infinite number of complementary
observables and therefore, indirectly, the assumption of continuous variables,
are just mathematical constructions which might not have a place in a final
formulation of quantum mechanics.

This leads to the second question, namely, how to derive the Schrödinger
equation. If the assumption just expressed is correct, namely that continuous
variables are devoid of operational and therefore physical meaning in quan-
tum mechanics, there is no need to express the Schrödinger equation based
on continuous variables in our new language. Indeed, one should then refer to
situations where one always has only a finite number of complementary ob-
servables. In our opinion such a point of view is experimentally well founded,
as any experiment will always lead to only a finite number of bits and a finite
number of the experimental results on the basis of which only a finite number
of observables can be operationally defined.

It has not escaped our attention that our way of reasoning also leads to
new possibilities for understanding why we have quantum physics, i.e., for
answering Wheeler’s famous question: Why the quantum? Identifying sys-
tems with the information they carry, we note that information is necessarily
quantized. One can have one proposition, two propositions, three proposi-
tions, etc., but obviously the concept of, say,

√
2 propositions is devoid of any

meaning. Therefore, since information is quantized that way, our description
of information, which is quantum mechanics, also has to be quantized.
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4 Quantum Theory Looks at Time Travel

Daniel M. Greenberger and Karl Svozil

Classically, time travel is inconsistent with free will. If one could visit the
past, then one could change the past, and this would lead to an alternative
present. So there is a paradox here, which is best illustrated by the famous
scenario of a person going back in time to shoot his father before his father
has met his mother, and thus negating the possibility of his having ever been
born. It is for reasons like this that time travel has been considered impossible
in principle [1].

Of course, one can get around this problem if one considers the universe
to be totally deterministic, and free will to be merely an illusion. Then the
possibility of changing the past (or the future, for that matter) no longer
exists. Since we prefer to think that the writing of this paper was not pre-
ordained at the time of the big bang, we shall reject this solution on psycho-
logical grounds, if not logical ones, and ask whether the paradoxes of classical
physics can be gotten around, quantum mechanically.

Most attempts to go beyond the confines of classical theory in order to
study time travel have been in the framework of relativity theory, making use
of the freedom to warp the topological properties of spacetime. We shall not
comment on these here, except to note that they are not incompatible with
what we shall be saying, and might conceivably be combined with it.

It seems to us that time travel is very much in the spirit of quantum
mechanics, and in fact, it seems quite arbitrary and outside the spirit of
the subject to forbid it [2]. For example, if one studies the propagation of a
physical system from time t1 to a later time t2, one writes

ψ(t2) = U(t2, t1)ψ(t1) , t2 > t1 , (4.1)

where U is some unitary operator describing the dynamical unfolding of the
system. To calculate U , one sums over all possible paths leading from the
initial state to the final state, but restricting these paths to the forward
direction of time.

Furthermore, it is well known that when one makes measurements in
quantum theory, one’s simple sense of causality is violated, and so a classical
sense of causality is a rather poor guide as to what should or should not be
allowed quantum mechanically. And this restriction would seem to violate
the spirit of the entire enterprise. Specifically, why should there not be some
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form of feedback into the past in determining what will happen in the future
(see Fig. 4.1)?

t 1 t 2

t 1

(a)

(b)

Fig. 4.1. In the path integral one can take all paths (a) that go forward in time,
but one excludes all paths (b) that go backward in time

In order to incorporate some form of feedback into the scheme, a simple
feedback mechanism such as that used in electronic circuits would be impossi-
ble, because in such a scheme, a simple feedback loop, such as that of Fig. 4.2
is used, and in such a loop, one has two circuit paths feeding into one, and
quantum mechanically this would violate unitarity, because it could not be
uniquely reversed. However, quantum mechanically, there is another way to
introduce feedback, and that is through the introduction of beam splitters,
which are unitary.

Fig. 4.2. In a classical feedback circuit, one inserts a loop that goes from a later
time to an earlier time. The loop then has two entry ports and only one exit port,
so that one cannot uniquely reverse it, and if tried quantum mechanically, it would
violate unitarity

4.1 Model of a Feedback System in Time

The model that we introduce is one which has two beam splitters, which
allows us to generalize the classical scheme of Fig. 4.2, and at the same time
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to present a unitary scheme allowing the particle to sample earlier times.
This should not be confused with the operation of time reversal, which is an
anti-unitary operation. The scheme is shown in Fig. 4.3.

M G1 G 2

ψ ψ

ψ

ψ

ψ

ψ

1 2

3

4

4

(t )1(t  )1

t 1

(t  )2
(t  )2

2t

Fig. 4.3. A quantum time evolution scheme with feedback. With no feedback, ψ(t1)
would evolve through G1 into ψ3(t2). There is another evolution channel G2 and a
feedback channel M that alter the output at time t2

In this scheme, if there were no feedback, then the standard unitary time
development would have ψ(t1) evolving into ψ3(t2),

ψ3(t2) = G1ψ(t1) . (4.2)

Here, the operator M generates the effects of the feedback in time. These
‘beam splitters’ are figurative, and their role is merely to couple the two in-
coming channels to two outgoing channels. The operator G1 represents the
ordinary time development in the absence of time feedback. The operator G2
represents an alternate possible time evolution that can take place and com-
pete with G1 because there is feedback. We want to find ψ3(t2) = f

(
ψ(t1)

)
in the presence of the feedback in time that is generated by the operator M .

At the beam splitters, which are shown in more detail in Fig. 4.4, the
forward amplitude is α, while the reflected amplitude is iβ. One needs the
factor of i because the two amplitudes must differ by 90◦ in order to preserve
unitarity. Normally, we expect that α� β, and in the limit α = 1, we should
get the situation represented by (4.2).

The beam splitters perform the unitary transformation

|a〉 = α|d〉+ iβ|c〉 , |b〉 = α|c〉+ iβ|d〉 , α2 + β2 = 1 . (4.3)

Here we assume for simplicity that α and β are real. We can invert this to
obtain
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a b

c d

Fig. 4.4. The beam splitter transmits with an amplitude α and reflects with an
amplitude iβ. The factor of i preserves unitarity

|d〉 = α|a〉 − iβ|b〉 , |c〉 = α|b〉 − iβ|a〉 . (4.4)

The overall governing equations can be read directly from Fig. 4.3. At time
t2 the second beam splitter determines ψ3(t2) and ψ4(t2). We have

ψ3(t2) ≡ ψ′
3 =
[
αψ1(t2)− iβψ2(t2)

]
= αψ′

1 − iβψ′
2 , (4.5)

where the prime indicates the time t2 in the argument, and no prime indicates
the time t1. The wave functions ψ1 and ψ2 are determined at time t2 by

ψ1(t2) = ψ′
1 = G1ψ1(t1) = G1ψ1 , (4.6)

ψ′
2 = G2ψ2 . (4.7)

So that from (4.5),

ψ′
3 = αG1ψ1 − iβG2ψ2 , (4.8)

and equivalently

ψ′
4 = αG2ψ2 − iβG1ψ1 . (4.9)

The propagator M is what produces the feedback in time, propagating from
t2 back to t1, so that ψ4(t1) = Mψ4(t2), or

ψ4 = Mψ′
4 . (4.10)

At the t1 beam splitter,

ψ1 = αψ − iβψ4 , (4.11)
ψ2 = αψ4 − iβψ . (4.12)
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4.2 The Solution

First, we want to eliminate the ψ4 in (4.11) and (4.12), to get equations for
ψ1 and ψ2. Then from (4.8) we can obtain ψ′

3. From (4.9) and (4.10),

ψ4 = Mψ′
4 = αMG2ψ2 − iβMG1ψ1 . (4.13)

We plug this into (4.11) and (4.12),

ψ1 = αψ − iβ(αMG2ψ2 − iβMG1ψ1) , (4.14)
ψ2 = α(αMG2ψ2 − iβMG1ψ1)− iβψ . (4.15)

We can rewrite these as

ψ1 = (1 + β2MG1)−1(−iαβMG2)ψ2 + α(1 + β2MG1)−1ψ , (4.16)
ψ2 = (1− α2MG2)−1(−iαβMG1)ψ1 − iβ(1− α2MG2)−1ψ . (4.17)

These are two simultaneous equations that we must solve to find ψ1 and ψ2
as functions of ψ. To solve for ψ1, substitute (4.17) into (4.16),

ψ1 = (1 + β2MG1)−1(−iαβMG2)
[
(1− α2MG2)−1(−iαβMG1)ψ1

−iβ(1− α2MG2)−1ψ
]

+ α(1 + β2MG1)−1ψ . (4.18)

This can be rewritten as[
1 + α2β2(1 + β2MG1)−1(MG2)(1− α2MG2)−1(MG1)

]
ψ1 (4.19)

= (1 + β2MG1)−1 [−αβ2MG2(1− α2MG2)−1 + α
]
ψ .

If we write this as

[X]ψ1 = Y −1[Z]ψ , (4.20)

then we can simplify the equation as follows:

Y X = 1 + β2MG1 + α2β2MG2(1− α2MG2)−1MG1

= 1 + β2 [1 + (1− α2MG2)−1α2MG2
]
MG1

= 1 + β2(1− α2MG2)−1MG1 , (4.21)

and

Z = α(1− α2MG2)−1(1− α2MG2 − β2MG2)
= α(1− α2MG2)−1(1−MG2) . (4.22)

Thus,
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ψ1 = α
[
1 + β2(1− α2MG2)−1MG1

]−1
(1− α2MG2)−1(1−MG2)ψ .

(4.23)

Then, using the identity A−1B−1 = (BA)−1, we finally get

ψ1 = α(1− α2MG2 + β2MG1)−1(1−MG2)ψ . (4.24)

We can solve for ψ2 similarly, by substituting (4.16) into (4.17),

ψ2 = −iβ(1− α2MG2 + β2MG1)−1(1 + MG1)ψ . (4.25)

Notice that in the denominator term in both (4.24) and (4.25), α and β have
reversed the role of the operators they apply to. We can finally use (4.8) to
solve for ψ′

3 = ψ3(t2),

ψ3(t2) =
[
α2G1D(1−MG2)− β2G2D(1 + MG1)

]
ψ(t1) , (4.26)

where D = (1 + β2MG1 − α2MG2)−1.

4.3 Some Important Special Cases

The Case α = 1, β = 0. This is the case where there is no feedback. Here

ψ′
3 = G1(1−MG2)−1(1−MG2)ψ = G1ψ . (4.27)

The Case β = 1, α = 0. This is the case where there is only feedback. Here

ψ′
3 = −G2(1 + MG1)−1(1 + MG1)ψ = −G2ψ . (4.28)

The Case G1 = G2 ≡ G.

ψ′
3 = G

[
1 + (β2 − α2)MG

]−1
(α2 − β2 −MG)ψ . (4.29)

If we also have α2 = β2 = 1/2, then

ψ′
3 = −GMGψ . (4.30)

The Case β � 1. This is expected to be the usual case. Then the answer
only depends on β2 = γ. Also, α2 = 1− β2 = 1− γ. Then to lowest order in
γ, the denominator D in (4.26) becomes

D =
[
1 + γMG1 − (1− γ)MG2

]−1 (4.31)

= (1−MG2)−1 − γ(1−MG2)−1(MG1 + MG2)(1−MG2)−1 ,

so that

ψ′
3 =
{

(1− γ)G1
[
1− γ(1−MG2)−1(MG1 + MG2)

]
−γG2(1−MG2)−1(1 + MG1)

}
ψ

= G1ψ − γ(G1 + G2)(1−MG2)(1 + MG1)ψ . (4.32)
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4.4 The Classical Paradox of Shooting your Father

The most interesting case is the one that corresponds to the classical paradox
where you shoot your father before he has met your mother, so that you
can never be born. This case has a rather fascinating quantum-mechanical
resolution. This is the case G1 = 0, where there is a perfect absorber in the
beam so that the system without any feedback would never get to evolve to
time t2. But quantum mechanically, we assume that there is another path
along G2, the one where you do not shoot your father, that has a probability
β without feedback. In quantum theory we deal with probabilities, and as
long as there is any chance that you may not meet your father, we must take
this into account.

The solution in this case is

ψ′
3 = −β2G2(1− α2MG2)−1ψ . (4.33)

We assume for simplicity that G2 is just the standard time evolution operator

G2 = e−iE(t2−t1)/h . (4.34)

and M is just the simplest backwards in time evolution operator

M = e−iE(t1−t2)/h+iφ , (4.35)

where we have also allowed for an extra phase shift. Then

ψ′
3 = −β2e−iE(t2−t1)/h

(
1− α2eiφ)−1

ψ , (4.36)

|ψ′
3|

2 =
β4

(1− α2eiφ) (1− α2e−iφ)
|ψ|2 =

1
1 + 4(α2/β4) sin2(φ/2)

|ψ|2 . (4.37)

Note that for φ = 0, ψ′
3 = −e−iE∆t/hψ, for any value of β. That means that

no matter how small the probability of your ever having reached here in the
first place, the fact that you are here, which can only happen because α �= 1,
guarantees that even though you are certain to have shot your father if you
had met him (G1 = 0), nonetheless you will not have met him! You will have
taken the other path, with 100% certainty. Obviously, this must be the case,
if you are to be here at all.

How can we understand this result? In our model, with φ = 0, we have
G1 = 0, and MG2 = 1. Also, we will assume that β � 1, even though this is
not necessary. The various amplitudes are

|ψ1| = 0 , |ψ2/ψ| = 1/β , |ψ4/ψ| = α/β , |ψ′
3/ψ| = 1 . (4.38)

So we see that the two paths of the beam splitter at t1 leading to the path
ψ1 cancel out. But of the original beam ψ, α passes through to ψ1, while
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of the beam ψ4, only the fraction β leaks through to ψ1. So the beam ψ4
must have a very large amplitude, which it does, as we can see from (4.38),
so that the two contributions can cancel at ψ1. In fact ψ4 has a much larger
amplitude than the original beam! Similarly, in order to have |ψ′

3| = |ψ|,
then ψ2 must have a very large amplitude. Thus we see that there is a large
current flowing around the system, between ψ2 and ψ4. But does this not
violate unitarity? The answer is that if they were both running forward in
time, it would. But one of these currents is running forward in time, while the
other runs backward in time, and so they do not in this case violate unitarity.
This is how our solution is possible.

4.5 Conclusion

According to our model, if you could travel into the past quantum mechan-
ically, you would only see those alternatives consistent with the world you
left behind you. In other words, while you are aware of the past, you can-
not change it. No matter how unlikely the events are that could have led to
your present circumstances, once they have actually occurred, they cannot
be changed. Your trip would set up resonances that are consistent with the
future that has already unfolded.

This also has enormous consequences on the paradoxes of free will. It
shows that it is perfectly logical to assume that one has many choices and
that one is free to take any one of them. Until a choice is taken, the future is
not determined. However, once a choice is taken, and it leads to a particular
future, it was inevitable. It could not have been otherwise. The boundary
condition that the future events happened as they already have, guarantees
that they must have been prepared for in the past. So, looking backwards, the
world is deterministic. However, looking forwards, the future is probabilistic.
This completely explains the classical paradox. In fact, it serves as a kind
of indirect evidence that such feedback must actually take place in nature,
in the sense that without it, a paradox exists, while with it, the paradox is
resolved. (Of course, there is an equally likely explanation, namely that going
backward in time is impossible. This also solves the paradox by avoiding it.)

The model also has consequences concerning the many-worlds interpre-
tation of quantum theory. The world may appear to keep splitting so far as
the future is concerned. However, once a measurement is made, only those
histories consistent with that measurement are possible. In other words, with
time travel, other alternative worlds do not exist, as once a measurement
has been made confirming the world we live in, the other worlds would be
impossible to reach from the original one. This explanation makes the von
Neumann state reduction hypothesis much more reasonable, and in fact acts
as a sort of justification of it.

Another interesting point comes from examining (4.37). For small angles
φ, we see that
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|ψ′
3|2 =

1
1 + 4(α2/β4) sin2(φ/2)

|ψ|2 −→ 1
1 + α2φ2/β4 |ψ|

2 , (4.39)

so that the above result is strongly resonant, with a Lorentzian shape, and a
width ∆φ ∼ β2, since α ∼ 1. Thus less ‘deterministic’ and fuzzier time trav-
elling might be possible, a possibility we have not yet explored. Neither have
we explored the possibility that feedback should be possible into the future
as well as the past. Of course in this case, it ought to be called ‘feedforward’,
rather than feedback.
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5 What Connects Different Interpretations
of Quantum Mechanics?

James B. Hartle

In this paper, we investigate the idea that different interpretations of quan-
tum mechanics can be seen as restrictions of the consistent (or decoherent)
histories quantum mechanics of closed systems to particular classes of his-
tories, together with the approximations and descriptions of these histories
that the restrictions permit.

5.1 Introduction

The authors of this book have jointly identified as many as thirteen different
interpretations of QM [1]. The very length of this list invites the questions:

• What are the relationships between these interpretations?
• To what uses may they be put?
• Is it possible to settle objectively on one?

This brief article offers some personal reflections on these questions.
The defining thread connecting interpretations of quantum theory is their

agreement on the probabilities for the outcomes of measurements, at least to
an excellent approximation. Some formulations may provide probabilities for
further kinds of alternatives such as the position of the Moon when it is not
receiving attention from observers, or the values of density fluctuations in
the very early universe when there were no observers around. However, a
formulation that does not reproduce the standard textbook answers for the
probabilities of measurements is not an interpretation of quantum mechanics.
Rather, it is a different theory. Such alternatives to quantum theory are of
great interest but not the subject of this essay.

The idea explored here is that a number of different interpretations of
quantum mechanics can be connected through the consistent (or decoherent)
quantum mechanics of a closed system. Specifically, a number of interpreta-
tions can be seen as restrictions of consistent histories quantum theory to
particular kinds of sets of alternative histories1 together with the approxima-
tions and special descriptions of the sets that these restrictions permit. This
essay examines three cases where this connection can be made and gives brief
discussions of the utility of the restrictions involved.
1 ‘Frameworks’ in the terminology of Griffiths.
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5.2 Quantum Mechanics of Closed Systems

We begin with a very brief review of the quantum mechanics of a closed
system, most generally the universe as a whole.2 To simplify the discussion we
neglect quantum gravity and assume a fixed background spacetime geometry.
The familiar apparatus of Hilbert space, states, and operators may then be
employed to formulate the quantum mechanics of the closed system.3 As
a simple model, we can think of a large, isolated box of N non-relativistic
particles. Dynamics can be specified in terms of particle positions xi and
momenta pi by a Hamiltonian

H =
N∑

i=1

p2
i

2mi
+ V (xi) . (5.1)

Both observers and observed, if any, are contained inside. This is evidently
not the most general description of a closed system but it will suffice to
illustrate some of the connections between interpretations that we describe
later.

We take the closed system to be described by a quantum state |Ψ〉. The
most general objective of quantum theory is the prediction from H and |Ψ〉 of
the probabilities of the individual members of a set of coarse-grained alterna-
tive histories of the closed system. A history is described by giving a sequence
of alternatives (α1, . . . , αn) at a series of times t1, . . . , tn. Alternatives at a
moment of time tk are represented by an exhaustive set of orthogonal, Heisen-
berg picture, projection operators {P k

αk
(tk)}, αk = 1, 2, . . . , and a history of

alternatives is represented by the corresponding chain of projections called a
class operator:

Cα = P k
αn

(tn) . . . P 1
α1

(t1) . (5.2)

Note that, on the left-hand side of (5.2), we have abbreviated the whole
chain (α1, . . . , αn) by a single index α. For example, if we are interested in
a history of the Earth moving around the Sun, the P ’s might be projections
onto exclusive ranges of the center of mass position of the Earth at a sequence
of times. This set of histories is coarse-grained because alternatives are not
specified at every time but only at some times, because the center of mass
position is not specified exactly but only in certain ranges, and because not
every variable describing the universe is specified but only the center of mass
of the Earth.

The class operators Cα defined in (5.2) permit the construction of branch
state vectors,
2 For details, see the classic expositions in [2–4].
3 For the generalizations that may be otherwise required, see [5]. We view the

quantum mechanics of closed systems as an extension and completion of the
Everett formulation and therefore do not count that as a separate interpretation.
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|Ψα〉 = Cα|Ψ〉 , (5.3)

for each history in the coarse-grained set. A set of histories decoheres when
there is negligible mutual interference between all the branch state vectors:

〈Ψα|Ψα′〉 ≈ 0 , α �= α′ . (5.4)

The joint probability pα for all the events in a history α is

pα = ‖Ψα〉‖2 = ‖Cα|Ψ〉‖2 , (5.5)

when the set of histories decoheres. Decoherence ensures the validity of the
probability sum rules which are among the defining properties of probability.

The above discussion is brief, certainly oversimplified in some respects, but
sufficient we hope for understanding the remarks which follow. The key point
for the ensuing discussion is the following. Decoherent histories quantum
mechanics predicts probabilities for many different sets of alternative histories
which are complementary in the following sense: each set is part of a complete
quantum description of the system, but there is no fine-grained decoherent
set of histories of which all the decoherent sets are coarse-grainings. A set
of histories coarse-grained by the Earth’s center of mass momentum is an
example of a set which (if decoherent) would be complementary to the set
coarse-grained by the Earth’s center of mass position.

Given H and |Ψ〉, it is in principle possible to calculate all decoherent
sets. Among these is the quasiclassical realm of everyday experience, coarse-
grained by the variables of classical physics, and exhibiting classical patterns
of correlation in time, summarized approximately by classical equations of
motion. As human observers we focus almost entirely on coarse-grainings of
this quasiclassical realm. However, quantum theory does not distinguish the
quasiclassical realm from other decoherent sets except by properties such as
its classicality.

The picture of quantum reality which emerges from the quantum me-
chanics of closed systems is very different from the reality of classical physics
involving, as it does, many complementary descriptions of the universe that
are mutually incompatible. Restricting the allowed sets of histories by some
principle4 typically yields a description of reality that is closer in character
to the familiar classical one. We will see this in the cases to be discussed.

5.3 Three Case Studies

This section considers the idea offered in Sect. 5.1 for three different inter-
pretations of quantum theory.
4 A set selection principle, in the terminology of Dowker and Kent [6].
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5.3.1 Copenhagen Quantum Mechanics

The Copenhagen quantum mechanics found in most textbooks is concerned
with the probabilities of histories of the outcomes of measurements carried
out by observers. The subsystem being observed is described by a Hilbert
space Hs. Dynamics is specified by a Hamiltonian h acting on Hs when the
subsystem is isolated. Initially the subsystem is assumed to be a state |ψ〉 in
Hs. The outcomes of a measurement carried out at time tk can be described
by a set of orthogonal, Heisenberg picture, projection operators {sk

αk
(tk)},

αk = 1, 2, . . . , analogous to the P ’s described in Sect. 5.2. The probabilities
for a history of ideal measurements (ones that disturb the subsystem as little
as possible) at times t1, . . . , tn are given by the analog of (5.5):

pα =
∥∥sn

αn
(tn) . . . s1

α1
(t1)|ψ〉

∥∥2 . (5.6)

Consistency is not an issue for these probabilities. Probabilities for a coarser-
grained history need not be the sum of the probabilities of finer-grained histo-
ries consistent with it. Finer- and coarser-grained measurements correspond
to different interactions of the subsystem with an external apparatus. Sets of
histories describing alternative measurements do not have to decohere.

Copenhagen quantum mechanics is an approximation to the quantum
mechanics of closed systems that is appropriate for histories of measurement
situations when the decoherence of alternatives that register the outcomes of
the measurements can be idealized as exact. We sketch only the key features
of a demonstration which are essentially the same as many measurement
models. For details see, e.g., [7], Sect. II.10.

We consider a closed system with a Hilbert space Hs⊗Hr, where Hs is the
Hilbert space of the measured subsystem and Hr is the Hilbert space of the
rest of the universe, including any measuring apparatus and observers. We
assume an initial state of the form |Ψ〉 = |ψ〉 ⊗ |Φr〉 and consider a sequence
of measurements at a series of times t1, . . . , tn. Measured alternatives of the
subsystem are described by projection operators whose Schrödinger picture
representatives have the form Sk

αk
= sk

αk
⊗ Ir. In a typical measurement sit-

uation, an alternative such as Sk
αk

becomes correlated with an alternative of
the apparatus and in particular with persistent records of the measurements.
The orthogonality and persistence of these records guarantees the decoher-
ence of the histories of measured outcomes. If the usual assumption is made
that the measurement interaction disturbs the subsystem as little as possible
(ideal measurement), then

pα =
∥∥Sn

αn
(t) . . . S1

α1
(t1)|Ψ〉

∥∥2
H ≈

∥∥sn
αn

(tn) . . . s1
α1

(t1)|ψ〉
∥∥2

Hr
. (5.7)

Thus Copenhagen quantum mechanics is recovered as a restriction of, and
approximation to, the quantum mechanics of closed systems. The second
equality in (5.7) is not exact but true to an excellent approximation in realistic
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measurement situations – typically far beyond the accuracy with which the
probabilities can be checked or the physical situation modeled.

The utility of the approximate quantum mechanics of measured subsys-
tems is evident. It is a truly excellent approximation for every laboratory
experiment which has tested the principles of quantum theory. Further, the
calculations of the approximate Copenhagen probabilities utilizing just the
Hilbert space of the measured subsystem will generally be vastly simpler
than in the Hilbert space of the universe. These advantages, however, should
not obscure the utility of embedding the Copenhagen quantum mechanics
in the more general quantum mechanics of closed systems for understanding
measurements (as above) and calculating just how good an approximation
it is.

5.3.2 Bohm Theory

To summarize the features of Bohm theory [8] that are relevant to the present
discussion, it is convenient to restrict attention to the closed system consisting
of N , non-relativistic particles in a box discussed in Sect. 5.2. An initial wave
function Ψ(x1, . . .xN , 0) is given. The particles in the box move on trajecto-
ries xi(t) that obey two deterministic equations. The first is the Schrödinger
equation for Ψ :

i�
∂Ψ

∂t
= HΨ . (5.8)

Then, writing Ψ = R exp(iS) with R and S real, the second equation is the
deterministic equation for the xi(t)

mi
dxi

dt
= ∇xiS(x1, . . . ,xN ) . (5.9)

The initial wave function is the initial condition for (5.8). The theory becomes
a statistical theory with the assumption that the initial values of the xi are
distributed according to the probability density on configuration space

℘ (x1, . . . ,xN , 0) = |Ψ (x1, . . . ,xN , 0)|2 at the initial time 0 . (5.10)

Once this initial probability distribution is fixed, the probability of any later
alternatives is fixed by the deterministic equation (5.9).

A coarse-grained Bohmian history α ≡ (αn, . . . , α1) is defined by a se-
quence of ranges {∆k

αk
} of the xi at a series of times t1, . . . tn and consists of

the set of Bohmian trajectories xi(t) that cross those ranges at the specified
times.

The predictions of Bohm theory and the quantum mechanics of closed
systems can be compared for sets of alternative histories coarse-grained by
ranges of the position xi at different times as above. Generally different prob-
abilities are predicted for the same set of histories [9]. This difference arises
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as follows: Bohm histories are deterministic. That means that the probability
that the particles traverse a series of regions of configuration space at a se-
quence of times is the same as the probability of the initial values of xi that
evolve to those trajectories under the equations of motion (5.8) and (5.9).
The probability of a Bohm trajectory can therefore be represented as

p(BM)
α = ‖Bα|Ψ〉‖2 , (5.11)

where Bα is a projection onto the appropriate initial conditions.
The probabilities of the same set of histories would be calculated in de-

coherent histories quantum theory from [see (5.5)]

p(DH)
α = ‖Cα|Ψ〉‖2 , (5.12)

provided the set is decoherent. Here the Cα are chains of projections like
(5.2). It is a simple observation is that a chain of projections like (5.2) is not
generally a projection and that therefore p

(BM)
α will not agree generally with

p
(DH)
α (see [9] for examples and further discussion).

Another way of seeing the difference is to note that in Bohm theory the
wave function always evolves by the Schrödinger equation – unitary evolu-
tion. But the action of a chain of projections Cα on the initial state can be
described as unitary evolution interrupted by the action of the projections
(reduction).

Only in the case of histories with alternatives at a single time are the
predictions of Bohm theory and the quantum mechanics of closed systems
guaranteed to agree. Then the Cα are projections. But this is an important
case because it leads to the conclusion that Bohm theory and the quantum
mechanics of closed systems agree on the probabilities of the outcome of
measurements.

One characteristic of a measurement situation which seems generally
agreed upon is that the results of a measurement are recorded – at least
for a time. A history Cα of measurement outcomes is recorded in a set of
alternatives {Rα} at a time later than the last alternative in Cα if the values
of the Rα are correlated with the outcomes of the measurements described by
the Cα. The Rα’s are projections even if the Cα’s are not. Bohm theory and
the quantum theory of closed systems will therefore agree on the probabilities
of these records.

Bohm theory can therefore be regarded as a restriction of the quantum
theory of closed systems to alternatives describing the records of measure-
ments (in the x’s) together with the description of these outcomes in terms
of deterministic trajectories obeying (5.8) and (5.9). An advantage of Bohm
theory (that is, of this restriction) that we believe would be claimed by its
proponents is the clear specification of one set of histories (of the x’s) as pre-
ferred over others. A potential disadvantage is that these histories, although
deterministic, may not be classical even in situations where the correlations of
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classical physics in time are predicted with high probability by the quantum
mechanics of closed systems [10]. Thus, for example, even when a classi-
cal past is retrodicted from present records from the quantum mechanics of
closed systems, Bohm theory may predict a non-classical one depending on
the nature of the initial condition [9].

5.3.3 Sum-Over-Histories

The starting point for a sum-over-histories formulation of quantum mechan-
ics is the specification of one set of fine-grained histories. For the model
universe of non-relativistic particles in a box, these are the particle paths
xi(t), i = 1, . . . , N . The allowed coarse-grainings are partitions of this set of
fine-grained histories into an exhaustive set of exclusive classes. For example,
the paths could be partitioned by how they traverse a set of regions of config-
uration space {∆αk

}, αk = 1, 2, . . . , at a sequence of times tk, k = 1, . . . , n.
The class operators Cα are specified by giving their matrix elements as sums
over the fine-grained paths in the coarse-grained class labeled by α. Denoting
a point in the 3N -dimensional configuration space by x, this sum is

〈x′′|Cα|x′〉 =
∫

α

δx eiS[x(t)]/� . (5.13)

Here, S[x(t)] is the action functional and the sum is over all fine-grained
histories in the class labeled by α. For instance, in the partition by sequences
of sets of regions at a series of times, a coarse-grained history α is labeled
by the regions (α1, . . . , αn) crossed at the sequence of times, and the sum in
(5.13) defining the class operator is over paths that cross these regions. The
construction of probabilities is then as described in Sect. 5.2.

Sum-over-histories quantum theory is evidently a restriction of the quan-
tum mechanics of closed systems described in Sect. 5.2. All the possible sets
of projection operators that might occur in the construction of a set of alter-
native histories like (5.1) are restricted to projections on ranges of position.
The predictions of the restricted sets agree because of identities that express
sums-over-histories in terms of operators. For instance,∫

[x′′,∆n,... ,∆1,x′]
dx eiS[x(t)]/� =

〈
x′′ ∣∣Pn

∆n
(tn) . . . P 1

∆1
(t1)
∣∣x′〉 , (5.14)

where the sum on the left-hand side is over all paths that start at x′ pass
through the regions (∆1, . . . , ∆n) at times t1, . . . , tn, and end at x′ [11].

The sum-over-histories formulation of quantum theory is not usually
discussed as a different interpretation of quantum mechanics. But it can
be [12, 13] because, like Bohm theory, it specifies a fundamental set of vari-
ables. In effect, it posits a set selection principle. To the extent that the qua-
siclassical realm in which we operate as human observers can be described
as a coarse-graining of configuration space [14], no predictive power is lost in
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making this restriction. However, the restriction is not so strong as to narrow
the range of available sets just to the quasiclassical realm.

There is some loss in convenience with a sum-over-histories formulation
because quantities like the momentum of a particle must be described in
spacetime terms – by time of flight for example [12]. But there is also poten-
tial gain. A sum-over-histories restriction provides a head start in the char-
acterization of classicality and the explanation of its origin (see e.g., [15]). A
sum-over-histories formulation of quantum mechanics is the natural frame-
work for investigating generalizations of quantum mechanics that are neces-
sary to describe spacetime alternatives extended over time (e.g., [16]) and
those which may be needed for a quantum theory of gravity [5, 17].

5.4 Is There One Interpretation of Quantum Mechanics?

It would be interesting to investigate how many different interpretations of
quantum theory can be seen as restrictions of the quantum mechanics of
closed systems together with the approximations and particular descriptions
of histories that these restrictions permit. That would be at least one way of
connecting different interpretations and a common basis for discussing their
assumptions, advantages, motivations, and limitations.

It would be equally interesting to identify interpretations of quantum
mechanics which cannot be viewed as restrictions of the quantum mechan-
ics of closed systems for some fundamental reason (and not simply because
they lack the coherence to decide). Consistent histories quantum mechanics
is logically consistent, consistent with experiment as far as is known, con-
sistent with textbook predictions for measurements, and applicable to the
most general physical systems. However, it may not be the only theory with
these properties. Investigations of interpretations that do not fit within its
umbrella framework may lead in different directions.

Can we distinguish between the different interpretations that are restric-
tions of the quantum mechanics of closed systems? Not by experiment or
observations. By assumption, the different interpretations agree on the pre-
dictions for measurement to excellent approximations. It seems unlikely to
this author that we can settle on one interpretation by argument and dis-
cussion. (There is some empirical evidence for this conclusion.) There are
too many individually held opinions on the objectives to be met by the re-
strictions. But neither does there seem to be a compelling need to settle
among interpretations that are restrictions of a common quantum mechanics
of closed systems.

We may be able to distinguish interpretations by their utility and/or
their promise as starting points for generalizations or alternatives to quan-
tum theory. For instance, Copenhagen quantum mechanics is inadequate for
cosmology. In cosmology there is no fundamental division of the closed sys-
tem into two parts, one of which measures the other. Measurements and
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observers cannot be fundamental in a theory that seeks to describe the early
universe where neither existed. In a quantum world there are generally no
variables that behave classically in all circumstances. As another example,
sum-over-histories quantum theory may be a productive route to generalizing
usual quantum theory to incorporate the dynamical spacetime geometry of
quantum gravity [5].

Many years ago, when an instructor at Princeton, I discussed my first
effort in understanding quantum mechanics [18] with Eugene Wigner. At the
conclusion of the discussion I asked him whether I should publish my results.
Wigner explained that there were some subjects – and the interpretation of
quantum mechanics was one of these – that one could not learn about by
reading books or attending lectures. One just had to work through them
by oneself. And usually, if people took the trouble to do this and reached
a conclusion, they published a paper. “So”, he said, “why shouldn’t you?”
Maybe that is another reason there are so many interpretations of quantum
theory.
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6 Is Quantum Mechanics the Whole Truth?

A.J. Leggett

I first briefly review the reasons for speculating that the linear formalism
of standard quantum mechanics may break down at some stage between
the level of the atom and that of human consciousness. Next, I review the
existing experimental evidence on this question, with particular emphasis
on the spectacular advances of the last two years in quantum optics and
condensed matter physics. Finally, I speculate on possible directions for future
experiments in this area.

6.1 Introduction

Most of the authors in this book have taken for granted that at the end of the
21st century the general framework provided by quantum mechanics will still
be regarded as universally valid, and have speculated on ways in which this
framework may be developed, extended or interpreted. In this contribution I
want to take a rather different point of view: to ask whether it is possible and
even likely that quantum mechanics may be discovered not to be the whole
truth about the physical world, and to enquire what constraints may be
put on such a possible failure from existing and future experiments. I have
recently written an extended review of this whole subject (Leggett 2002),
and will therefore not go into great detail here on the relevant experiments
(though I will update the above reference somewhat, since there have been
exciting developments over the last year).

6.2 Motivation

Why should we even contemplate the possibility that quantum mechanics
(hereafter abbreviated QM) may not be the whole truth about the physical
world? At least for me, the main motivation is the existence, and (in my
view) insolubility within the standard scheme of QM, of the measurement
paradox. To summarize an argument which is given in much more detail in
Sect. 2 of (Leggett 2002):

1. At the microscopic level (the level of single electrons, neutrons etc.) a lin-
ear superposition of the form aψ1 +bψ2 cannot be reasonably interpreted
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as implying that each electron (etc.) of the ensemble occupies either the
state described by ψ1 (with probability |a|2) or that described by ψ2
(probability |b|2); the evidence that such an interpretation is unviable is
provided by the phenomenon of interference between the states ψ1 and
ψ2, as manifested, e.g., in a standard Young’s slits experiment.

2. The assumption that the formalism of QM is of universal validity leads to
the generation, under suitable experimental conditions, of Schrödinger’s-
cat-type states, that is, states of the universe of the form aΨ1+bΨ2, where
Ψ1 and Ψ2 describe states of the world which are by some reasonable
criterion macroscopically distinct (e.g. ‘cat alive’ and ‘cat dead’).

3. The fact that at this (macroscopic) level the evidence, in the form of
observable interference between the states Ψ1 and Ψ2, against the inter-
pretation rejected at stage (1) has become impossible to obtain in no way
justifies us in now embracing this interpretation. (The formalism of QM
is a seamless whole, and makes no distinction between microscopic and
macroscopic lines, so any interpretation of it should likewise be seamless.)

4. Therefore, it is impossible to interpret the superposition aΨ1 + bΨ2 as
saying that in any particular instance (i.e., on any one ‘run’ of the many
experimental runs composing the ensemble so described) the universe is
either in the macroscopic state described by Ψ1 (with probability |a|2) or
in that described by Ψ2 (with probability |b|2). This conclusion appears to
conflict with our ‘common-sense’ perception (?) that at the macroscopic
level, at least, the universe is always in a definite state.

Of the various ‘resolutions’ of the apparent paradox which have appeared in
the literature there are three which seem to me to represent in some sense
‘pure’ cases and which I shall therefore mention explicitly here; most of the
others are in some sense blends of these arguments with different weights.

The first is the Everett–Wheeler (relative-state, ‘many-worlds’) interpre-
tation: this accepts all four stages of the above argument, and while agreeing
that the conclusion apparently conflicts with common sense, argues that com-
mon sense is wrong: the universe, when described by a Schrödinger’s cat wave
function, really is not in a definite macroscopic state, and our impression to
the contrary is an illusion. I cannot claim to understand this interpretation,
since the words ‘really is (not)’, as used by its advocates, while ostensibly
English, convey nothing to me.

The second interpretation, the extreme ‘statistical’ interpretation as ad-
vocated, e.g., by Ballentine (1970), may perhaps be regarded as the view one
arrives at by taking the traditional (and not very well defined) Copenhagen
interpretation to its logical conclusion: in effect it challenges the above argu-
ment already at stage 1, by denying that the very question “did this electron
go through slit 1 or slit 2?” has any meaning. According to this view, the
only ‘reality’ is constituted by directly observed macroscopic events, and the
whole formalism of QM is nothing more nor less than a recipe for calculating
the relative probabilities of such events: it describes nothing at all in the



6 Is Quantum Mechanics the Whole Truth? 85

real world. This viewpoint seems to me free of obvious internal inconsisten-
cies but extremely unpalatable psychologically, in perhaps the same sense as
the concept of instantaneous action at a distance seemed unsatisfactory to
a minority of 18th-century skeptics (who, of course, were eventually proved
right!).

Probably the most widely embraced ‘resolution’ of the measurement para-
dox (and certainly the one which has generated the most technical work in
this area) is the decoherence point of view, which rests in effect on the denial
of stage (3) of the above argument. That is, advocates of this point of view,
e.g., (Zurek 1991), argue that:

(a) by the time we get from the level of single electrons, neutrons, etc., to that
of cats and Geiger counters, the possibility of exhibiting interference be-
tween the relevant (macroscopically distinct) states has indeed vanished,

(b) ‘therefore’ by that stage one or other outcome has definitely been realized
on each individual run of the ensemble.

Unfortunately, almost all the literature in this area (including some work of
great technical elegance) has been devoted to embellishing the details of step
(a) of the argument, which to my mind was never in serious question (at
least as it refers to ‘typical’ situations: but see below); a minuscule degree
of attention, if any at all, is paid to step (b), which to my mind constitutes
a severe logical non sequitur: the fact that the evidence against a particu-
lar interpretation of the QM formalism has vanished in the transition from
micro- to macrolevel does not, in my view, justify us in now embracing that
interpretation!

Thus, I believe that no interpretation of QM which takes the latter to be
the whole truth about the physical world (including the many variants, such
as the consistent-histories interpretation, which I have not discussed explic-
itly in the last few paragraphs) can provide a satisfactory resolution of the
measurement paradox. If that is so, then the only way out would appear to
be to question the premiss of stage (2) of the argument, namely that QM
is indeed the whole truth; and in particular to explore the hypothesis that
for reasons currently unknown to us, the quantum superpositions of macro-
scopically distinct states which are predicted by the extrapolation of the QM
formalism do not in fact occur in nature, but that one or other outcome
is always realized. I call such a hypothesis generically macroscopic realism
or ‘macrorealism’. Various specific proposals for how definite outcomes may
be realized have appeared in the literature, the best-developed probably be-
ing that associated with the names of Ghirardi, Rimini, Weber and Pearle
(GRWP, see, e.g., Pearle et al. 1999). Below I shall not specialize to any par-
ticular such proposal but will discuss the question of macrorealistic theories
in general.

While the above radical hypothesis may or may not excite the philosoph-
ically inclined, its degree of interest to the majority of practicing physicists
is likely to depend crucially on the extent to which it can be tested experi-
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mentally. And at this stage we appear to face a rather formidable difficulty:
If it is indeed true, as postulated in the premiss of step (3) of the argument
above, that the quantum interference of macroscopically distinct states (here-
after abbreviated QIMDS) is experimentally unobservable, then by definition
all experimental results at this level are guaranteed to come out exactly ‘as
if’ one of the two macroscopically distinct states described by Ψ1 or Ψ2 had
in fact been realized in each individual run of the ensemble, and thus the
question of whether such realization indeed takes place must remain forever
inaccessible to experimental resolution. Thus, the only condition under which
a test is possible is that the argument for decoherence of macroscopically dis-
tinct states is not of universal validity, or to put it in different words, that a
correct extrapolation of the QM formalism does not forbid the occurrence of
QIMDS under all possible circumstances. It is precisely this hope which has
motivated much of the experimental work described in the rest of this paper.

What one would like to do, then, is to set up an experimental situation
in which a technically correct application of the formalism of QM leads to
the prediction of the QIMDS phenomenon, and to look to see whether this
prediction is indeed borne out by the experimental data. If it is not, then
one will be led (of course after an appropriately careful check of the details
of experiment and QM theory!) to consider seriously the hypothesis that this
is evidence for a breakdown of the universal validity of the QM formalism. If
on the other hand the QM predictions are found experimentally, then it is of
interest to try to rule out, at the relevant level, the alternative hypothesis of
macrorealism.

A question arises, of course, as to what exactly one means by ‘macroscop-
ically distinct’, and how to quantify this concept. I refer to (Leggett 2002) for
a detailed discussion of this question, and simply state here my own prefer-
ences (prejudices?) for the defining ingredients, namely, a large value of two
parameters which I call respectively ‘extensive difference’ and ‘disconnectiv-
ity’: the former refers to the difference, in suitably chosen ‘atomic’ units, of
expectation values of various extensive quantities in the two states compared,
while the latter, at least in the simplest cases, is essentially equivalent to the
notion of entanglement as developed in the context of recent work on quan-
tum information; crudely speaking, the degree of disconnectivity is of the
order of the lowest-order correlation function one would have to measure in
order to directly distinguish the superposition of the two states Ψ1 and Ψ2
from a classical mixture of these states. For details see (Leggett 2002) .

One may object at this point that it is totally unrealistic at present, and
likely to remain so for the foreseeable future, to measure correlation functions
of any order higher than single digits. This is true, but fortunately we do
not need to do this; in effect, under appropriate circumstances nature will
measure these higher-order correlation functions for us, by implementing the
time correlation operator Û(t) ≡ exp(−iĤt) (see, e.g., Leggett 1984).
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6.3 Experiments

I now turn to the various experiments conducted so far which may be re-
garded as implementing this program, whether by conscious design or not.
For a considerably more detailed discussion of all except the most recent
experiments, see Sect. 5 of (Leggett 2002).

The experiments which are the most direct analog of the familiar Young’s
slits experiments with single neutrons are those of the Vienna group (Arndt
et al. 1999), in which a Young’s slits setup was used to diffract fullerene
(C60) molecules. In these experiments the description of the ensemble at the
intermediate (two-slit) screen is approximately by a wave function of the
general form aΨ1 + bΨ2 where Ψ1 corresponds to the C60 molecule being near
slit 1 and Ψ2 to its being near slit 2. Since the C12

60 molecule contains 360
electrons and 720 nucleons, both of the quantities Λ and D defined above
are of order 1000. Although the evidence for interference is not quite as
spectacular as in similar experiments on neutrons, etc., it is fairly clear-cut,
and there seems little doubt that it could be made sharper in a new generation
of experiments were it thought important to do so .

A historically prior, but more controversial set of experiments which have
been interpreted as evidence for QIMDS is on the biological molecule ferritin.
In this series of experiments (Harris et al. 1999) the raw data on magnetic
rf absorption and noise show evidence of a striking resonance which appears
at low temperatures, and this is interpreted as corresponding to the coher-
ent switching of the iron core between opposite directions of magnetization
(Julsgaard et al. 2001). Such a coherent oscillation (analogous to the well-
known inversion resonance of the NH3 molecule) requires that the quantum
mechanical state at intermediate times should be a linear superposition of
the two states; and since the total number of iron atoms in the core is of
order 5000, this interpretation would imply values of the two parameters Λ
and D of this order. At the time of writing there is an unresolved controversy
regarding the correctness of this interpretation of the data: see Sect. 5.2 of
(Leggett 2002).

The above two observations of QIMDS rely in effect on the application
of the time development operator as indicated above, and the parameters Λ
and D are in both cases of the order of the total number N of particles in
the relevant system. The next example to be discussed relies on a different
principle, and the values of Λ and D are of order N1/2 rather than N . This
example is a rather spectacular recent experiment (Reid 2000) in quantum
optics, which was actually motivated by interest in the nonlocal aspects of
QM rather than in the measurement question as such. In this experiment the
raw data, if interpreted according to the standard prescriptions of QM, give
strong evidence that a degree of entanglement of order N1/2 (∼ 106) was
generated between samples each containing N ∼ 1012 atoms. As explained in
Sect. 5 of (Leggett 2002), the data can equally be interpreted as indicating
a superposition state with Λ and D values of the same order (∼ N1/2). It
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should be emphasized that in this case the occurrence of the superposition
cannot be read off directly from the raw data, but must be inferred with the
help of certain a priori theoretical expectations concerning the description of
the system: see (Leggett 2002), loc. cit.

While this is (at least to my knowledge) the only existing experiment
which demonstrates QIMDS (at any level which could reasonably be called
macroscopic) in a quantum-optical system, there exist other proposals in the
literature, e.g., (Reid 2000), which exploit somewhat related considerations:
in these cases also, the experimental verification of the phenomenon would
not require the use of the time evolution operator, but the values of Λ and D
realized would apparently again be of order N1/2 rather than N . On the other
hand, it is not out of the question that very large values of N (say ∼ 1024)
would be attainable. This state of affairs then raises the question: Is it more
significant, from the point of view of the quantum measurement problem, to
produce a superposition involving (say) 1024 particles where the values of Λ
and D are of order 1012, or one in which Λ and D are (say) of order 1011 but
the total number of particle s in the system is also of this order? In other
words, is it the absolute or the relative value of ‘disconnectivity’ (etc.) which
is important? I think that like so many questions relating to possible ways
in which QM might break down, this one is legitimately a matter of opinion;
for what it is worth, my own prejudice is that it is the relative values which
are more significant, at least once one is demonstrably in the ‘macroscopic’
realm.

I finally turn to the systems in which searches for ‘macroscopic quantum
effects’ have the longest and perhaps richest history, namely superconduct-
ing devices based on the Josephson effect. The original foundational moti-
vation for research in this area has been strongly boosted in the last ten
years by the hope that systems of this type [or more precisely their collective
(macroscopic) degrees of freedom] may be suitable candidates for the ele-
ments (qubits) of a quantum computer – a hope which clearly relies on the
expectation that these degrees of freedom will behave according to the laws
of quantum mechanics. After a long period in which the foundations were
firmly laid, progress in this area over the last three years has been spectacu-
lar: in 2000 the first circumstantial evidence was attained for the occurrence
of QIMDS in systems of this type (with values of Λ and D up to ∼ 109), and
in 2002 the first observation was made of real-time oscillations (analogous to
those of the NH3 molecule) between two reasonably (D ∼ 104–105) macro-
scopically distinct states of the magnetic flux. [For details of all of this, see
(Leggett 2002), Sects. 5.4 and end of Sect. 6.] As this goes to press, there
are reports (Chiorescu 2003) of yet more spectacular observations of such
quantum oscillations of the flux between two macroscopically distinct states;
from the data given I estimate that the Q-factor is around 400 and the D (or
Λ) parameter in the range 105–106.



6 Is Quantum Mechanics the Whole Truth? 89

6.4 Prospects

Thus, whenever it has been tested, the extrapolation of QM to the macro-
scopic scale has to date given very impressive agreement with experiment.
Where does this leave us? Should we, already at this stage, conclude that
QM is indeed the whole truth? I think this would be distinctly premature:
while the physical scale (Λ and D values) of the systems in which QIMDS has
been verified to occur (in particular, in the superconducting device systems)
is already approaching the half-way mark, on a logarithmic scale, between the
level of the atom and that of everyday human experience, the systems so far
examined are in some sense very crude; they do not have any of the subtleties
associated (for example) with biological organization. So while it would no
doubt be of some significance, should it turn out to be feasible, to push the
limits on Λ and D to values yet closer to the scale of human experience, I
believe it would be at least as valuable to explore the continued validity of
QM as it were along other dimensions: for example, to attempt to generate
quantum superpositions of two states of a molecule such as myoglobin with
different biological functionalities, or of the different states of the rhodopsin
in the human eye corresponding to perception or non-perception of a weak
light signal. Because (inter alia) of the likely severe effect of decoherence un-
der biologically relevant conditions, such experiments will almost certainly be
orders of magnitude more demanding than the QIMDS experiments carried
out to date, but I believe they would be extremely valuable.

In a different direction, I believe it is important to stress that while ex-
isting experiments have very satisfactorily verified the predictions of QM at
the level of ‘macroscopicness’ represented, e.g., by Josephson devices, they
have not refuted outright the predictions of the class of ‘macrorealistic’ the-
ories; it is entirely conceivable (though it might perhaps be thought rather
improbable) that some theory of this class would account equally well for
existing experimental observations. An experiment which, if it confirms the
QM predictions, must automatically refute those of any macrorealistic theory
was described some years ago by Garg and the present author (Leggett and
Garg 1985); see Sect. 6 of (Leggett 2002) for further references. The large
Q-factor obtained for the QIMDS experiment of (Chiorescu 2003) suggests
that this experiment is now entirely feasible at the level of superconducting
devices, and it is my hope that it will be performed in the near future. If
it is done and, as expected by most physicists, confirms the predictions of
QM, we shall know for sure that the characteristic weirdness of the quantum
world, successfully confined for so many decades to the world of electrons and
atoms, has propagated at least a substantial part of the way up towards the
level of our direct experience. If the results do not confirm the predictions of
QM, then the cat will indeed be among the pigeons!
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7 Roundtable Discussion I:
Physical Theories, Present and Future

Smolin: I am honored to chair this session. This is an opportunity to say to
each other the things that we wanted to say for many years [laughter]. Would
one of our philosophers like to open with a conceptual comment?

Saunders: Let me begin with the point of view saying that the universal
state is unitarily evolving in time, and our business as physicists is to find
interesting patterns in that evolution. These patterns should be explanatory
and have interesting stories to tell. One can, of course, find many differ-
ent patterns which correspond to different consistent history spaces. One can
even find patterns where conditional probabilities do not obey the usual rules
because they are not even related to a consistent history space at all. But
if we do stick to, in particular, a quasi-classical history space, we see pat-
terns which are robust and obey equations of motion that we are familiar
with. Such a propagating pattern is exactly the sort of thing that we are
constituted of. But on that sort of a view, call it view (1), every history in
the quasi-classical domain is real – they all exist. They differ only in their
probability amplitudes. These amplitudes are also a part of the reality, and
the fact that they all coexist is not in contradiction with the fact that one
can decompose the universal state in an entirely different basis, because it is
the superposition that ultimately makes up that universal state. All of that
makes for a package which I think is coherent and intelligible, although there
is a remaining outstanding problem of what we mean by ‘probability’. It’s a
difficult question. One can choose a different point of view altogether which
gives a familiar and perhaps more simple answer.

The different point of view, view (2), is that there is a unique history,
which is real, while all the rest are not real. One then analyses the universal
state in order to get a probability measure over histories, and a single history
is realized.

Is there some view (3)? I think there is one, which Griffiths1 subscribes
to: For every history space, there is one (but only one) history that is real.
Again, for each history space, one has a familiar notion of probability.
1 R.B. Griffiths: Choice of consistent family, and quantum incompatibility, Phys.

Rev. A 57, 1604–1618 (1998).
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And I would now add view (4), the version of the many-worlds interpre-
tation in which there is a unique consistent history space. All of the histories
are realized, one of them being ours, and the probability is purely epistemic –
we just don’t know which history is ours; we know what it is up to the present
time but we don’t know what it is in the future. So we have epistemic proba-
bility and we have a probability measure on this space, interpreted in terms
of our subjective ignorance of what to expect in the future.

In view (1), the fundamental object is the universal state, and there are
many interesting ways of showing patterns within that universal state. The
use of consistent histories is a very useful way. One then has no interference
among histories. Quasi-classical histories are even better, because then you
have approximate equations of motion that you can use. But the fundamental
object is the superposition of all such histories. ‘Reality’ is the universal state,
which is propagating unitarily, and of course we, our environment, and so on,
are a small part of this universal state. One can make a distinction between
what is actual relative to us, and what is not, which of course links back
to Everett’s original idea of ‘relative states’. It then turns out that we are
correlated with a unique past, and of course that we are not correlated with
an alternative state of affairs in which we are not meeting here in this room.
Option (1) has the familiar branching tree-like picture.

I think the notion of probability is intelligible and meaningful in option
(1), but it is much more familiar in options (2), (3), and (4). But on any of the
latter, you place great stress on what precisely is the history space. On option
(3), you are saying that one history is realized from every history space, but
it is the history space which ours belongs to that has the relevant probability
measure, and one needs to know what it is. On options (2) and (3) there
is something like reduction of the wave function. That obviously puts great
weight on the question of what the history space is. People like GRW,2 or
those who work on the pilot wave theory [see Hiley in Chap. 16], spend years
struggling courageously to say precisely what, in effect, the history space is.
But even on option (4) the same applies. You are having all of the histories
realized in a unique history space but still one has to know what that unique
history space is. And once you say that you might as well let go of all of the
other histories, and just stick with one of them, so I think option (4) more
or less collapses down to option (2). That leaves option (1) as the only one
that does not require any precise specification of the history space, because
the entire point is that the use of the history space is instrumental. One is
extracting interesting patterns. They are all there. But the price is that there
is no longer an easy and familiar answer to the question ‘What is probability?’

Hartle: I start from the idea that that quantum theory predicts probabilities
for alternative histories of the universe. I understand what these probabilities
2 G. Ghirardi, A. Rimini, and T. Weber: Unified dynamics for microscopic and

macroscopic systems, Phys. Rev. D 34, 470–479 (1986).
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mean through understanding how they are used in physics. Namely, we use
the theory to predict probabilities and check the theory against those predic-
tions that have a probability near 1 or 0. Predicted probabilities include those
conditioned just on the initial state of the universe used largely in cosmol-
ogy, but also probabilities conditioned on further information (conditional
probabilities). An example is the probability of the sun coming up tomorrow
at a particular time, which is conditioned on the state of the universe but
also on the information we have from our earlier observations of the solar
system. The usual statistical interpretation of probabilities follows when this
understanding is applied to a very large ensemble of identical situations in
the universe.

With this view of how to use quantum theory, I’m less compelled than
some of you to take a stand on ‘what is realized’. I would like to interpret
all statements about the theory in terms of the probabilities it supplies. It
seems to me that a statement about ‘what is realized’ is an extra feature
that can be added, perhaps to clarify probability, perhaps for other purposes
that make people happy. What I can say is that quantum theory does not
distinguish between different decohering sets except by properties such as
classicality. Therefore one can’t adopt position (4) that there is a unique set
of decoherent histories that is the quasi-classical realm.

Dürr: The basic entity is the operator algebra. The probability aspect en-
ters only when we measure. Then we deal with particular representations
of this algebra in a linear state space, which depend on how we split the
‘Whole’ (the Cosmos) into the smaller subsystem under observation and the
huge and infinite remainder, the ‘background’ system containing the observer
and his measuring devices, all treated classically. The particular split cho-
sen is a matter of convenience, depending on what questions we ask and
want to have answered. Different choices of such a separation define different
approximations. The wave functions usually considered are features of the
non-relativistic quantum mechanics. They lose their intelligible meaning in
a relativistic quantum theory which necessarily requires ‘many-body’ states
or representations of quantum fields. The 3-space locations are no longer
operators but simply parameters like the time. In addition, the quantiza-
tion conditions are essentially (or even exclusively) based on ‘non-classical’
spinors. The probability aspect only becomes meaningful if one can approxi-
mately define asymptotic states consisting of free particles. Mathematically,
the probability features are related to the metric structure of the state space
which, in general, will not be a Hilbert space (positive definite metric) allow-
ing a (positive definite) probability interpretation, but a Nevanlinna space
(indefinite metric) characteristic, in particular, of gauge-type field theories.

Hartle: You’re certainly right that we make approximations in everyday
calculations such as dividing the universe into two parts to describe a mea-
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surement situation. But in quantum cosmology, we consider the state of the
universe as a whole and from it make predictions for the probabilities of the
behavior of the universe as a whole. We can’t assume ignorance of this state
and replace it by a unit density matrix. That would imply an infinite tem-
perature and other features that are in contrary to our experience.

Dürr: Near the big bang, the ‘state’ certainly has to be considered to be
‘quantum’. I just cannot see how our experience with non-relativistic quan-
tum theories employing ‘quasi-classical history’ notions and other classical
‘egg shells’ are at all appropriate for tackling this problem. I have no clue
how to write down expressions which would simulate something like the prob-
ability amplitude of the ‘Whole’. In this case the observed system would be
the Whole and there is nothing left for the ‘remainder’ containing the ob-
server.

Hartle: Nevertheless we can investigate the quantum state of the whole
universe. If quantum mechanics applies to the whole universe then every pre-
diction is fundamentally a quantum mechanical probability. Especially in the
late universe, as you say, the probabilities may be high that some variables
behave approximately classically but that classical behavior depends crucially
on the quantum state.

Rovelli: Let’s say I use the conditional model to calculate probabilities: “Fact
A has happened, then . . . .” However, what is the state of this ‘Fact A’ in the
theory? Are all the physicists going to agree that that fact really happened?

Hartle: Questions about ‘what happened’ are answered by probabilities
about the past in quantum mechanics. In quantum cosmology, from a present
data plus the initial state of the universe you can calculate the probabilities
for alternatives in the past. (In classical physics you need only the present
data to calculate probabilities of the past, but in quantum mechanics you also
need the initial state.) If future aliens recover phases that we have lost, they
could be unable to make the retrodictions about the past that we can. The
past is not permanent in this sense. The permanency of the past is generally
an approximate notion, but in many familiar situations a truly excellent ap-
proximation.

Rovelli: So something which for me is a fact for me in the present, for some-
one else might not be a fact in the future?

Hartle: Yes, it’s somewhat like the situation in a Stern–Gerlach experiment.
When the beam is split you can infer the past spin of the particle from the
present position of the beam. But if the beams are coherently recombined,
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you can’t make those inferences.

’t Hooft: There are different questions that one can ask about reality. The
first question is: what are the laws of physics, what are the degrees of free-
dom, and what was the initial state of the universe? The other question is:
given a certain system, what can we say about it, about reality? A third kind:
given a system, what can we predict about it in the future? A lot of data is
missing. We don’t know all of the rules of physics, we don’t know the exact
initial state of the universe, only approximately, we don’t know the exact on-
tological nature of the world, and we can’t make good predictions about the
future. So we have three kinds of ignorance, and we must keep them distinct.

Stapp: Jim [Hartle], in your famous paper with Gell-Mann,3 you took some
Everettian idea, with Griffiths’4 consistent history, as well as decoherence.5

So you used three ideas together. But essentially, you are Everettian (camp
1 as Simon [Saunders] said). Yet you said that we calculate probabilities
and make predictions – more like the Copenhagen view. Are you sticking
to the Everettian view of a wave function of the universe, or do you admit
that we can’t know the universal state, and stick to conditional probabilities?

Hartle: Copenhagen quantum mechanics is included in a quantum mechanics
that deals with the wave function of the whole universe. Copenhagen quan-
tum mechanics is an approximation to that more general framework that is
appropriate for measurement situations. If you have a measurement situation
within the universe, calculations based on an approximate wave function of
a measured subsystem will give probabilities that coincide with a calculation
based on the wave function of the whole universe.

Stapp: Is it your position that there is a reality out there which is described
by the wave function of the universe?

Hartle: To answer your question, Henry, I have to say a little about several
different meanings of ‘reality’. First there is the reality of everyday experience
– the agreement among most human observers about what is happening and
3 M. Gell-Mann and J.B. Hartle: In: Complexity, Entropy, and the Physics of In-

formation, SFI Studies in the Sciences of Complexity, Vol. VIII, ed. by W. Zurek,
Addison Wesley, Reading, MA, or in: Proceedings of the 3rd International Sympo-
sium on the Foundations of Quantum Mechanics in the Light of New Technology ,
ed. by S. Kobayashi, H. Ezawa, Y. Murayama, and S. Nomura, Physical Society
of Japan, Tokyo (1990).

4 R. Griffiths: Consistent histories and the interpretation of quantum mechanics,
J. Stat. Phys. 36, 219 (1984).

5 D. Giulini. E. Joos, C. Kieffer, J. Kupsch. I.O. Stamatesscu, and H.D. Zeh
(Eds.): Decoherence and the Appearance of a Classical World in Quantum The-
ory , Springer (1996).
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has happened. Humans who disagree, as those with certain mental illnesses,
are said to be ‘out of touch with reality’. This agreement is explained in
quantum mechanics by the fact that the great majority of us are all using
various coarse-grainings of one set of histories constituting the quasi-classical
realm. That is a human specific notion of reality.

But many scientists and philosophers are interested in a different no-
tion of reality – roughly ‘what’s out there independent of human cognition’.
Quantum reality in this sense is very different from our everyday notion be-
cause there are many sets of decoherent histories that are different from the
quasi-classical realm. These sets of coarse-grained histories are generally com-
plementary . That is, there is no finer-grained decoherent set of histories that
contains them all. The theory does not distinguish between these, except by
criteria such as classicality. In particular, it does not say that one set is real
and the others are not. Quantum reality therefore consists of one history in
each distinct decoherent set of possible histories.

So yes, Henry, I would say that there is ‘reality out there’, both the
everyday notion of reality and the general quantum reality based on many
complementary decoherent sets of histories.

Saunders: There has been a lot of talk here about ‘reality’. This is a philo-
sophical term that has many readings. The more clear-cut problem is that
we don’t know where to go with quantum gravity. The crucial question is
whether we are going to look at the problem of measurement as something
that gives us a research strategy or not. Is it going to fit into what we are
going to do in quantum gravity? If one is going to reject the Everett inter-
pretation, one is then forced to look for a precise definition of the history
space. That seems to require physical principles which will be relevant to
quantum gravity. Dirac is famous for saying that the problem of measure-
ment is not really interesting because it doesn’t give us any new equations,
and it is the equations that matter. But how wrong can you get? We have
two very clear proposed solutions for the problem of measurement . One is
the de Broglie–Bohm, the other GRW. In both cases you have new equations!

Zeilinger: We now have a situation in which we have a number of different
viewpoints of quantum mechanics and we violently disagree! I say that there
is no measurement problem at all. For me this is actually a virtue of the
whole business while for others it’s a big problem. I’m talking strictly about
the interpretation. All interpretations are equivalent (GRW is an exception).
It all depends on whether any one of these different ways of looking at it
really leads to a new view of the world. And that could very well be what I
view as the Copenhagen interpretation and its strict minimalist program: Do
not assume anything you cannot strictly talk about, verify experimentally
and so on. Or it could be another program, we don’t know. We simply have
to try all of them. I think we should leave all these paths open because we
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don’t know where and when a clever young guy will build some new insights.

Saunders: It seems to me to be widely doubted that there is even one coher-
ent, intelligible interpretation that leaves quantum mechanics alone. I think
the fundamental question to resolve is: Do we have even one conservative
interpretation of quantum mechanics?

Zeilinger: I do not say that your interpretation is not coherent or not intelli-
gible. I just don’t like it [laughter]! No, seriously, it comes down to a matter of
personal choice! I don’t think that there is more to that. I would never claim
that what you say is not intelligent, not consistent, I would never claim that!
I just don’t like it for some emotional reasons. This is all that can distinguish
between the different points of view. And I hope that this point of view is
also not incoherent [laughing].

Hartle: Are you saying that different interpretations are a matter of view-
point rather than experiment?

Zeilinger: In this respect there are no differences between ‘many worlds’,
Bohm’s and my own viewpoint.

Unidentified: What about GRW?

Zeilinger: GRW is a different theory. I’m not talking about alternative the-
ories.

Elitzur: Anton, suppose that instead of a Schrödinger cat, there is a physi-
cist. Will she have all the information about what went on with her during
the time she was in superposition? Suppose you could fulfill your dream,
sending Greenberger through a wall with a double slit: What will he say?

Zeilinger: If he remembers whether he took the right or the left path, there
will be no quantum interference. But if he forgets, that is, ‘forgets’ in a quan-
tum erasure way, then it’s ok.

Elitzur: That’s actually the meaning of interference, namely, erasure, isn’t
it? And it won’t make any difference whether it’s a particle or a physicist?

Zeilinger: Right. I see no reason to claim that quantum interference with a
living object, including humans, might not work some day! For Schrödinger’s
cat, it is very often said that we will not be able to see interference phenom-
ena for a living object because the living object needs to interact with the
environment all the time. But I can see no reason why, for a very small living
organism, we should not be able to put it in a tiny container with all the life



98

support systems, so we have no interaction with the environment. And then
you can have the whole system in a superposition and eventually observe
interference.

Smolin: Does anyone have something nice to say as a closing remark?

Zeilinger: I guess we would all be very surprised if we weren’t very surprised
by the future development of the field!



8 Determinism Beneath Quantum Mechanics

Gerard ’t Hooft

Contrary to common belief, it is not difficult to construct deterministic mod-
els where stochastic behavior is correctly described by quantum mechanical
amplitudes, in precise accordance with the Copenhagen–Bohr–Born doctrine.
What is difficult, however, is to obtain a Hamiltonian that is bounded from
below, and whose ground state is a vacuum that exhibits complicated vacuum
fluctuations, as in the real world.

Beneath quantum mechanics, there may be a deterministic theory with
(local) information loss. This may lead to a sufficiently complex vacuum state,
and to an apparent non-locality in the relation between the deterministic
(‘ontological’) states and the quantum states, of the kind needed to explain
away the Bell inequalities.

Theories of this kind would not only be appealing from a philosophi-
cal point of view, but may also be essential for understanding causality at
Planckian distance scales.

8.1 Motivation

The need for an improved understanding of what quantum mechanics really
is need hardly be explained in this meeting. My primary concern is that
quantum mechanics, in its present state, appears to be mysterious. It should
always be the scientist’s aim to take away the mystery of things. It is my
suspicion that there should exist a quite logical explanation for the fact that
we need to describe probabilities in this world quantum mechanically. This
explanation can presumably be found in the fabric of the laws of physics at
the Planck scale.

However, if our only problem with quantum mechanics were our desire to
demystify it, then we could put forward the fact that, as it stands, quantum
mechanics works impeccably. It predicts the outcome of any conceivable ex-
periment, apart from some random ingredient. This randomness is perfect.
There never has been any indication that there would be any way to predict
where in its quantum probability curve an event would actually be detected.
Why not be at peace with this situation?

One answer to this is quantum gravity. Attempts to reconcile general
relativity with quantum mechanics lead to a jungle of complexity that is
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difficult or impossible to interpret physically. In a combined theory, we no
longer see ‘states’ that evolve with ‘time’, we do not know how to identify the
vacuum state, and so on. What we need instead is a unique theory that not
only accounts for quantum mechanics together with general relativity, but
also explains how matter behaves. We should find clues pointing towards the
correct unifying theory underlying the standard model, towards explanations
of the presumed occurrence of supersymmetry, as well as the mechanism(s)
that break it. We suspect that deeper insights into what and why quantum
mechanics is should help us to further understand these issues.

Related to the question of quantizing gravity is the problem of quantizing
cosmology. Astrophysicists tell us that the Universe started with a ‘Big Bang’,
but, at least at first sight, such a statement appears to be at odds with the
notions of quantum mechanical uncertainty. In principle, we could know the
state the Universe is in at present, and then solve the Schrödinger equation
backwards in time, but this should yield a quantum superposition of many
configurations, not just a Big Bang. Questions of this sort may seem of purely
academic nature, but they become very concrete as soon as one attempts to
construct some reasonable model for a ‘quantum universe’. The notion of a
quantum state of the Universe appears to defy logic.

Attempts have nevertheless been made to reconcile quantum mechanics
with cosmology. Whether the proposed schemes may be viewed as a satis-
factory picture of our world is difficult to discuss. To convince someone that
they are flawed may be as difficult as changing someone’s religious beliefs.
Therefore, I shall refrain from trying to do this; instead, one further issue
will be displayed in the next section.

8.2 Holography

Black holes are not only legitimate solutions of Einstein’s field equations
for the gravitational force, but one can also show quite easily that black
holes inevitably form under given favorable initial conditions of conventional
matter configurations. Such ‘conventional’ black holes are very big, having a
radius at least of the order of 10 km. Therefore, they are usually considered
as classical, i.e., non-quantum mechanical objects. But, at least in principle,
they should also obey the laws of quantum mechanics. Elementary particles
in the vicinity of a black hole should be described by quantum field theory,
and the laws of general relativity should dictate how to handle quantum
field theory here. As was shown by S. Hawking, this exercise leads to the
astonishing result that particles must emerge from a black hole [1].

Mathematically, the explanation for this effect is that time is measured by
freely falling observers in a coordinate frame that is fundamentally different
from the coordinate frame used by the onlooking observer outside the black
hole. Physically, one may explain the emission as a gravitational tunneling
effect, comparable to the pair creation of charged particles in the presence
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of a strong electric field. The emission rate is precisely computable, and con-
ventional theory gives a flux of particles corresponding to a temperature

TH =
�c3

8πkGMBH
, (8.1)

where k is Boltzmann’s constant and MBH is the mass of the black hole.
Hawking’s result can be used to estimate the density of quantum states of

a black hole. Assuming a transition amplitude Tin for the absorption process,
there are two ways to write an estimate for the absorption cross-section σ(k)
for an amount of matter δE with momentum k by a black hole of mass MBH:

σ ≈ 2πr2
+ = 8πM2

BH , (8.2)
σ = |Tin|2ρ(MBH + δE)/v . (8.3)

Here, r+ is the radius of the outer event horizon, ρ(M) is the density of states
of a black hole with mass M , and v is the velocity of the absorbed particle.
The probability W dt of particle emission during a time interval dt can also
be written in two ways:

W dt = |Tout|2ρ(MBH) dt/V , (8.4)

W dt =
σ(k)v

V
e−δE/kTHdt . (8.5)

Here, V is the volume of a box, in which the wave function of the emitted
particle is normalized. Dividing (8.2)–(8.5), we get, in Planck units [2]

ρ(M + δE)
ρ(M)

=
|Tout|2
|Tin|2

eδE/kTH = e8πMδE . (8.6)

We have assumed here that |Tout| = |Tin|. All that is needed for this assump-
tion is PCT invariance, since σ(k) is symmetric under P and C. For all known
field theories, PCT is a perfect symmetry. Needless to say, we do not know
this to be so for quantum gravity, but it would be a natural assumption.

Equation (8.6) is to be seen as a differential equation that is easily inte-
grated to give

ρ(M) = e4πM2+C = C′2A/A0 , (8.7)

where C and C′ are integration constants, A = 4πr2
+ is the black hole area,

and A0 = 4 ln 2 in Planck units. One concludes that the density of quantum
states of a black hole is that of an object with A/A0 free Boolean parameters
on its surface. The integration constant represents a fixed degree of freedom
that all black holes have in common. The result (8.7) can also be derived using
thermodynamics, but then one has to cope with the difficulty that black holes,
embedded in a thermal environment, are unstable because of their negative
specific heat (since they cool off when energy is added to them) [3].
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In one respect, this result appears to be quite interesting and acceptable.
Apparently, the quantum states of a black hole form a discrete set, just as if
the black hole were a fairly ordinary object, easily to become macroscopic, in
the astronomical case. Black hole formation and evaporation can indeed be
described in terms of quantum amplitudes, and if the black hole is very tiny,
these amplitudes can be represented in Feynman diagrams.

On closer inspection, however, there are several problems with this result.
We would have thought that a general coordinate transformation transforms
states into states. An ingoing observer describes what (s)he sees in terms
of particle states superimposed on an approximately flat spacetime environ-
ment, using regular coordinates. The outside observer uses the black hole
coordinates featuring a horizon. The states observed by the outside observer
are counted by discrete variables of one bit for every area unit A0. How can
this mapping of discrete states onto the continuum of states for the ingoing
observer be unitary? How does the ingoing observer count his/her states?
We should have expected the number of these states to scale with the bulk
volume of his environment, not with the area.

Hawking’s calculation gives no clues here. On the contrary, it appears to
tell us that, even if the initial state of an imploding object were a quantum
mechanically pure state, the radiating black hole that emerges after some
time would nevertheless be in a quantum mechanically mixed state [4]. Such
a transition cannot be described by any Schrödinger equation. Does the black
hole, viewed as an isolated object, disobey the quantum code? This is what
was concluded initially, but most of us now agree that such a conclusion must
be premature [2].

If, on the other hand, information is conserved in unitary evolution equa-
tions, how is it that the information in the ingoing particles is transmitted
to the outgoing ones?

A first clue towards answering this question was provided by taking into
account the fact that ingoing particles interact with outgoing ones when they
pass each other. The gravitational interaction here diverges. Early ingoing
particles meet late outgoing ones in an entirely different local Lorentz frame,
so that the relative energy, that is, the energy in the center of mass frame, is
large, and this number diverges exponentially with the time difference of the
two particles [5]. Taking this into account, one does find a unitary scattering
matrix relating outgoing particles to ingoing ones, but the spectrum of states
does not seem to be bounded by the horizon area. Such a bound presumably
has to come from the transverse components of the gravitational interactions,
which are much harder to calculate [6].

Requiring that the number of states in some region of space, described by a
theory, is bounded by the surface area of this region, seems to be paradoxical.
This paradox seems to be as deep and fundamental as the one that lead
M. Planck to his postulates of quantum mechanics, or, in other words, we
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expect its resolution to involve a paradigm shift. How can we have locality
in three-space, but numbers bound by two-space?

In certain versions of string theory, these apparently conflicting demands
are met to some extent [7], except that the concept of locality appears to be
ignored. The amount of ‘magic’ required for these ideas to work is still not
acceptable. It is this author’s belief that the true reason for the mysterious
nature of this problem is our insistence on sticking to the language of quantum
mechanics. It seems to be only natural to see a link between the mysteries of
string theory and those of the correct interpretation of quantum mechanics.

8.3 Harmonic Oscillators

It is instructive to ask how a deterministic system can be addressed using the
mathematics of quantum mechanics. Our starting point is that we may have
simple autonomous dynamical systems, where later we will decide how they
should be coupled. Thus, we start with a deterministic system consisting of
a set of N states [8] {

(0), (1), . . . , (N − 1)
}

, (8.8)

on a circle. Time is discrete, the unit time steps having length τ (the contin-
uum limit is left for later). The evolution law is

t→ t + τ : (ν)→ (ν + 1 mod N) . (8.9)

Introducing a basis for a Hilbert space spanned by the states (ν), the evolution
operator can be written as

U(∆t = τ) = e−iHτ = e−πi/N

⎛⎜⎜⎜⎜⎜⎝
0 1
1 0

1 0
. . . . . .

1 0

⎞⎟⎟⎟⎟⎟⎠ . (8.10)

The phase factor in front of the matrix is of little importance; it is there
for future convenience. Its eigenstates are denoted by |n〉, n = 0, . . . , N − 1.
They are found to be

|n〉 =
1√
N

N∑
ν=1

e2πinν/N (ν) , n = 0, . . . , N − 1 . (8.11)

This law can be represented by a Hamiltonian using the notation of quantum
physics:

H|n〉 =
2π(n + 1/2)

Nτ
|n〉 . (8.12)
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The term +1/2 comes from the aforementioned phase factor. Next, we apply
the algebra of the SU(2) generators Lx, Ly and Lz, whence

N
def= 2� + 1 , n

def= m + � , m = −�, . . . , � . (8.13)

Using the quantum numbers m rather than n to denote the eigenstates, we
have

H|m〉 =
2π(m + � + 1/2)

(2� + 1)τ
|m〉 or H =

2π

(2� + 1)τ
(Lz + � + 1/2) .

(8.14)

This Hamiltonian resembles the harmonic oscillator Hamiltonian when
ω = 2π/(2� + 1)τ , except for the fact that there is an upper bound for the
energy. This upper bound disappears in the continuum limit, if �→∞, τ ↓ 0.
Using Lx and Ly, we can make the correspondence more explicit. Write

L±|m〉 def=
√

�(� + 1)−m(m± 1)|m± 1〉 , (8.15)

L±
def= Lx ± iLy , [Li, Lj ] = iεijkLk , (8.16)

and define

x̂
def= αLx , p̂

def= βLy , α
def=
√

τ

π
, β

def= − 2
2� + 1

√
π

τ
. (8.17)

The commutation rules are

[x̂, p̂] = αβiLz = i
(
1− τ

π
H
)

, (8.18)

and since

L2
x + L2

y + L2
z = �(� + 1) , (8.19)

we have

H =
1
2
ω2x̂2 +

1
2
p̂2 +

τ

2π

(
ω2

4
+ H2

)
. (8.20)

Now consider the continuum limit τ ↓ 0, with ω = 2π/(2� + 1)τ fixed, for
those states for which the energy stays limited. We see that the commutation
rule (8.18) for x̂ and p̂ becomes the conventional one, and the Hamiltonian
becomes that of the conventional harmonic oscillator:

[x̂, p̂]→ i , H → 1
2
ω2x̂2 +

1
2
p̂2 . (8.21)
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There are no other states than the legal ones, and their energies are bounded,
as can be seen, not only from (8.20), but also from the original definition
(8.14). Note that, in the continuum limit, both x̂ and p̂ become continuous
operators, since both α and β tend to zero.

The way in which these operators act on the ‘primordial’ or ‘ontological’
states (ν) of (8.9) can be derived from (8.15) and (8.17), if we realize that
the states |m〉 are just the discrete Fourier transforms of the states (ν) [see
(8.11)]. This way, the relation between the eigenstates of x̂ and p̂ and the
states (ν) can also be determined. Only in a fairly crude way, x̂ and p̂ give
information about where on the circle our ontological object is; both x̂ and
p̂ narrow down the value ν of our states (ν).

The most important conclusion from this section is that there is a close re-
lationship between the quantum harmonic oscillator and the classical particle
moving around a circle. The period of the oscillator is equal to the period of
the trajectory along the circle. We started our considerations by having time
discrete, and only a finite number of states. This is because the continuum
limit is a rather delicate one. One cannot start directly with the continuum
because the Hamiltonian does not then seem to be bounded from below.

The price we pay for a properly bounded Hamiltonian is the square root in
(8.15). It may cause complications when we attempt to introduce interactions,
a problem that has not yet been properly worked out.

Starting from this description of harmonic oscillators in terms of determin-
istic models, one may attempt to construct deterministic theories describing,
for instance, free bosonic particles [9]. Strings can also be seen as collections
of harmonic oscillators. A first attempt to write string theory in determin-
istic terms failed because conformal invariance could not be built in [11].
Apparently, further new ideas are needed here.

8.4 Continuous Degrees of Freedom

In the previous section, a discrete, periodic system was considered and we
took the continuum limit in the end. Could one not have started with a
continuous model right from the beginning?

Take a Newtonian equation
d
dt

qi(t) = f i(q) . (8.22)

We can write the quantum Hamiltonian

H =
∑

i

pif
i(q) , pi =

�

i
∂

∂qi
. (8.23)

This is quantum language for a classical, deterministic system. It works be-
cause the Hamiltonian is linear, not quadratic, in the momenta pi. The dif-
ficulty linking this with real quantum mechanics is that this Hamiltonian
cannot possibly be bounded from below, so that there is no ground state.
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8.5 Massless, Non-Interacting Fermions

Massless, non-interacting fermions are entirely deterministic. this can be
demonstrated by identifying the ‘beables’ for this system. Beables are a com-
plete set of observables Oi(t) that commute at all times:

[Oi(t),Oj(t′)] = 0 , ∀ t, t′ . (8.24)

To begin with, consider only first-quantized, chiral fermions. They have a
two-component complex wave function obeying the Hamilton equation for

H = σ · p , σi σj = δijI + iεijkσk , (8.25)

where σi are the Pauli matrices. Consider the set

Oi(t) =
{
p̂ , p̂·σ , p̂·x} , (8.26)

where

p̂i ≡ ±
pi

|p| , p̂x > 0 . (8.27)

These operators obey closed time evolution equations:

d
dt

x = σ(t) ,
d
dt

(
p̂·x(t)

)
= p̂·σ ,

d
dt

(p̂·σ) = 0 . (8.28)

p̂(t) = p̂(0) , p̂·σ(t) = p̂·σ(0) , p̂·x(t) = p̂·x(0) + p̂·σ(0)t . (8.29)

The fact that all operators in (8.26) commute with one another is easy to
establish, with the possible exception of [p̂i, p̂·x]. The fact that the latter
vanishes is most easily established in momentum space, realizing that p · x
is the dilatation operator, while p̂ keeps the same length 1 under dilatations:

[p̂·x, p̂i] = i
(

p̂· ∂

∂p

)
p̂i = 0 . (8.30)

The physical interpretation of this result is that the dynamical behaviour of
a massless, chiral, non-interacting fermion is exactly like that of an infinite,
flat, oriented sheet, moving with the speed of light in a direction orthogonal
to the sheet. ±p̂ gives the direction of the sheet, p̂·σ gives the sign of its
orientation and p̂·x its distance from the origin.

As before, we encounter the difficulty that, in this deterministic sys-
tem, the Hamiltonian is not bounded below, again because it is linear in
the momenta pi. Thus, there exists no ground state. In this case, however,
P.A.M. Dirac told us what to do: second quantization. Assume an indefinite
number of particles with Hamiltonian (8.25). Consider the range of energies
they can have. Take the state where all negative energy states are occupied
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by a particle, all positive energy states are empty. That is the state with
lowest possible total energy, the vacuum state. It is standard procedure, but
it does require our particles to obey Fermi statistics, or, in other words, no
two particles are allowed in the same state, and interchanging two particles
does not change a state into a different one.

The latter condition is easily met, but to forbid two particles to be in
the same state requires some sort of repulsion. The easiest procedure is to
have at each value for the unit orientation vector p̂ a grid with some finite
spacing a. No two sheets are allowed on the same lattice point. Then we can
count the states exactly as in a fermion theory and the second quantization
procedure works. The limit a ↓ 0 can be taken without any difficulty.

8.6 Locality

Let us focus a bit more on the ontological states for massless fermions. They
are characterized by an orientation k̂ (obeying |k̂| = 1), and a distance scalar
z. Furthermore, we need the quantum operator conjugate to z, which we call
q ≡ −i∂/∂z. We define η3 to be the sign of q, and k̂ is the orientation of the
sheet with its sign chosen so that it moves in the positive k̂ direction:

(p̂·σ)p̂ ≡ k̂ ≡ η3
p

|p| , η3 ≡
p · σ

|p| = ±1 . (8.31)

z = k̂·x is the distance of the sheet from the origin, apart from its sign, which
denotes whether the sheet moves away from or towards the origin. To define
the original components of the vector p, we first have to find its length |p|.
This we take to be the operator

|p| ≡ |q| ≡ −iη3
∂

∂z
, so p = −ik̂

∂

∂z
. (8.32)

k̂ and z are the ontological variables, or beables, whereas q and η3 are change-
ables. We have H = q, so the dynamical equations are now simply

ż = 1 ,
˙̂
k = 0 , (8.33)

which are the equations of a sheet moving in a fixed direction. Since (8.32)
defines the momenta, and their canonically conjugate operators the positions,
we should now be in a position to compute the conventional wave function
ψ(x, σ3), σ3 = ±1, if we have some wave function ψ(k̂, z). A fairly delicate
calculation gives

ψ(x,±) =
1
2π

∂2
x

∫
sin θ dθ dφ

⎛⎜⎝ cos
1
2
θ

e−iφ sin
1
2
θ

⎞⎟⎠ |k̂, z〉 , (8.34)
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where we have used the notation

z = k̂·x , k̂ =

⎛⎜⎝ sin θ cos φ

sin θ sin φ

cos θ

⎞⎟⎠ . (8.35)

Thus, apart from the Laplacian, all sheets contributing to ψ(x, σ3) go through
the point x.

8.7 Information Loss

The reasons why information loss may be an essential ingredient in determin-
istic hidden variable models of the sort pioneered above, has been extensively
discussed in [8,10]. A prototype microcosmos with information loss is shown
in Fig. 8.1. Following the arrows, one would conclude that the evolution ma-
trix is

U =

⎛⎜⎜⎝
0 0 1 0
1 0 0 1
0 1 0 0
0 0 0 0

⎞⎟⎟⎠ . (8.36)

Of course, this is not a unitary matrix. One way to restore unitarity would
be to remove state 4. The problem with that is that, in universes with a large
number of allowed states, it would be very difficult to determine which of the
states are like state number 4, i.e., have no state at all in their (distant) past.

A preferred way to proceed is therefore to introduce equivalence classes of
states. Two states are equivalent iff, some time in the near future, they evolve
into one and the same state.1 In Fig. 8.1, states 1 and 4 are equivalent, so
they form one class. By construction then, equivalence classes evolve uniquely
into equivalence classes.

It should be emphasized that, at the Planck scale, information loss is not a
small effect but a very large effect. Large numbers of ‘ontological’ states are in
the same equivalence class, and the equivalence classes form a much smaller
set than the class of all states. This is how it can happen that the total
number of distinguishable quantum states (i.e., the number of equivalence
classes) may only grow exponentially with the surface of a system, whereas
the total number of ontological states may rise exponentially with the volume.
This seems to be demanded by black hole physics, when we confront the laws
of quantum mechanics with those of black holes.
1 It could also happen that two states merge into the same state in the distant

future, but in many models such events become increasingly unlikely as time
goes on.
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1 2 3

4

Fig. 8.1. Mini-universe with information loss. Arrows show the evolution law

Information loss at the level of the underlying deterministic theory may
also explain the apparent lack of causality in the usual attempts to under-
stand quantum mechanics in terms of hidden variables. The definition of an
equivalence class refers to the future evolution of a system, and therefore
it should not be surprising that in many hidden variable models, causality
seems to be violated. One has to check how a system will evolve, which re-
quires advance knowledge of the future.

Information loss at the Planck scale may also shed further light on the
origin of gauge theories. It could be that, at the level of the ontological degrees
of freedom at the Planck scale, there is no local gauge symmetry at all, but
in order to describe a physical state, that is, an equivalence class, we need
to describe a particular member of this class, a single state. Its relation to
the other members of the same equivalence classes could be what is presently
called a ‘gauge transformation’.

There is another aspect to be considered in theories with information loss.
Theories with continuous degrees of freedom would have an infinite number
of possible states if there were no information loss. With information loss,
there may be a discrete set of limit cycles, meaning that the equivalence
classes may still form discrete sets. Discreteness, one of the prime features of
quantum physics, could thus be ascribed to information loss.

8.8 Conclusion

Our view concerning the quantum mechanical nature of our world can be
summarized as follows:

• Nature’s fundamental laws are defined at the Planck scale. At that scale,
all we have is bits of information.

• A large fraction of this information gets lost very quickly, but it is replen-
ished by information entering from the boundaries.

• A quantum state is defined to be an equivalence class of states all of which
have the same distant future. This definition is non-local and acausal,
which implies that, if we attempt to describe everything that happens
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purely in conventional quantum mechanical terms, as in superstring the-
ories, locality and even causality will seem to be absent at the Planck
scale. Only in terms of a deterministic theory can this demand of internal
logic be met.

• These equivalence classes are described by observables that we call ‘be-
ables’. In quantum terminology, beables are a complete set of operators
that commute at all times [see (8.24)]. A beable describes what a Planck-
ian observer would be able to register about a system – information that
did not get lost.

• All other quantum operators are ‘changeables’, operators that do not
commute with all beables.

• The wave function ψ has the usual Copenhagen–Bohr–Born interpreta-
tion.

• However, many or all of the familiar symmetries of nature, such as trans-
lation, rotation, Lorentz and isospin symmetry, must be symmetries that
relate beables to changeables. This means that the ‘ontological’ theory
behind quantum mechanics does not have these symmetries in a conven-
tional form.

When we go from the Planck scale to the standard model scale:

• Our only way to obtain effective laws of physics at the larger distance
scales is by applying the renormalization group procedure.

• Beables and changeables are then mixed up to the extent that it is im-
possible to identify them; they obey the same laws of physics.

• When we perform a typical quantum experiment, we do not therefore
know in advance whether an operator we are working with is a beable
or a changeable. Due to the symmetries mentioned above, beables and
changeables may obey the same laws of physics. Only when we measure
something, and not before, do we know that what we are looking at is a
beable. In this way, we believe, apparent clashes with Bell’s inequalities
may be avoided.

• The classical observables in the classical (macroscopic) limit commute
with the beables. They are beables as well.

There remain numerous difficulties. Most urgent is the need for a viable
model, demonstrating the workings of the mechanism that we believe to be
responsible for the conspicuous quantum mechanical nature of the world we
live in. It continues to be difficult to produce a non-trivial model, for instance,
one showing particles that interact, while their Hamiltonian is nevertheless
bounded from below.
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9 Relational Quantum Mechanics

Carlo Rovelli

QM is one of the most successful scientific theories ever. However, the inter-
pretation of what the theory actually tells us about the physical world has
raised a lively debate, which has continued from the early days of the theory
to the present.

The possibility that the physical content of an empirically successful phys-
ical theory could be debated should come as no surprise: examples abound in
the history of science. For instance, the great scientific revolution was fueled
by the debate over whether the effectiveness of the Copernican system could
be taken as an indication that the Earth was not in fact at the center of the
universe. In more recent times, Einstein’s celebrated first major theoretical
success, special relativity, consisted to a large extent just in understanding
the physical meaning (simultaneity is relative) of an already existing effective
mathematical formalism (the Lorentz transformations). In these cases, as in
the case of quantum mechanics, a very strictly empiricist position could have
circumvented the problem altogether, by reducing the content of the theory
to a list of predicted numbers. But science would not have progressed in this
way.

Quantum theory was first constructed for describing microscopic systems
(atoms, electrons, photons) and the way these interact with macroscopic ap-
paratus built to measure their properties. Such interactions are called mea-
surements. The theory is formed by a mathematical formalism, which allows
probabilities of alternative outcomes of such measurements to be calculated.
If used just for this purpose, the theory raises no difficulty. But we expect
the macroscopic apparatus itself – in fact, any physical system in the world –
to obey quantum theory, and this seems to raise contradictions in the theory.

9.1 Where is the Problem?

In classical mechanics, a system S is described by a certain number of phys-
ical variables. For instance, an electron is described by its position and its
spin (intrinsic angular momentum). These variables change with time and
represent the contingent properties of the system. We say that their values
determine, at every moment, the ‘state’ of the system. A measurement of
a system’s variable is an interaction between the system S and an external
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system O, whose effect on O depends on the actual value q of the variable
(of S) which is measured.

The characteristic feature of quantum mechanics is that it does not allow
us to assume that all variables of the system have determined values at every
moment (this irrespective of whether or not we know such values). It was
Werner Heisenberg who first understood the need to free ourself from the
belief that, say, an electron has a well determined position at every time.
When it is not interacting with an external system that can detect its position,
the electron can be ‘spread out’ over different positions. In the jargon of the
theory, one says that the electron is in a quantum superposition of two (or
many) different positions.

It follows that the state of the system cannot be captured by giving the
value of its variables. Instead, quantum theory introduces a new notion of
the state of a system, which is different from a list of values of its variables.
Such a new notion of state was developed in the work of Erwin Schrödinger in
the form of the ‘wave function’ of the system. P.A.M. Dirac gave the general
abstract formulation of the notion of quantum state, in terms of a vector
Ψ moving in an abstract vector space. From the knowledge of the state Ψ ,
we compute the probability of the different measurement outcomes q. That
is, the probability of the different ways in which the system S can affect a
system O in the course of an interaction with it.

The theory then prescribes that at every such measurement, one must
update the value of Ψ , to take into account which of the different outcomes
has happened. This sudden change of the state Ψ depends on the specific
outcome of the measurement and is therefore probabilistic. It is called the
collapse of the wave function.

The problem of interpreting quantum mechanics then takes different
forms, depending on the relative ontological weight we choose to assign to the
wave function Ψ or, respectively, to the sequence of measurement outcomes
q1, q2, q3, . . . .

9.1.1 Wave Function Ontology

If we take Ψ as the ‘real’ entity which fully represents the actual state of
affairs of the world, we encounter a number of difficulties. First, we have to
understand how can Ψ change suddenly in the course of a measurement: if
we describe the evolution of two interacting quantum systems in terms of the
Schrödinger equation, no collapse happens. Furthermore, the collapse, seen
as a physical process, seems to depend on arbitrary choices in our description
and shows a disturbing amount of nonlocality.

But even if we circumvent the collapse problem, the most serious difficulty
with this point of view is that it appears to be impossible to understand how
specific observed values q1, q2, q3, . . . , could emerge from Ψ alone.
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9.1.2 Ontology of Quantum Events

A better alternative is to take the observed values q1, q2, q3, . . . , as the actual
elements of reality, and view Ψ as a mere bookkeeping device, determined by
the actual values q1, q2, q3, . . . , that happened in past. From this perspective,
the real events of the world are the ‘realizations’ (the ‘coming to reality’, the
‘actualization’) of the values q1, q2, q3, . . . , in the course of the interaction be-
tween physical systems. These quantum events have an intrinsically discrete
(quantized) granular structure.

The difficulty with this second option is that if we take the quantum
nature of all physical systems into account, the statement that a certain
specific outcome q ‘has happened’ can be true and not-true at the same time.

To emphasize this key point, consider the case in which a system S inter-
acts with another system (an apparatus) O, and exhibits a value q of one of
its variables. Assume that the system O obeys the laws of quantum theory
as well, and use the quantum theory of the combined system formed by O
and S in order to predict the way this combined system can later interact
with a third system O′. Then quantum mechanics forbids us to assume that
q has happened. Indeed, as far as its subsequent behavior is concerned, the
combined S + O system may very well be in a quantum superposition of
different possible values q1, q2, q3, . . . .

This ‘second observer’ situation captures the core conceptual difficulty
of the interpretation of quantum mechanics: reconciling the possibility of
quantum superposition with the fact that the observed world is characterized
by uniquely determined values q1, q2, q3, . . . . More precisely, it shows that we
cannot disentangle the two: according to the theory, an observed quantity q
can be at the same time determined and not determined.

9.2 A Solution

A solution to the difficulty is offered by the relational interpretations of quan-
tum mechanics [2]. These are based on the idea that the theory should be
understood as an account of the way distinct physical systems affect each
other when they interact – and not the way physical systems ‘are’. This ac-
count exhausts all that can be said about the physical world. The physical
world must be described as a net of interacting components, where there is no
meaning to ‘the state of an isolated system’. The state of a physical system
is the net of the relations it entertains with the surrounding systems. The
physical structure of the world is identified as this net of relationships.

More precisely, the way out of this dilemma suggested by the relational
interpretations is that the values of the variables of a physical system S,
namely the q s, are relational. That is, they do not express a property of the
system S alone, but rather refer to the relation between two systems.
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In particular, the central tenet of relational quantum mechanics [1] is that
there is no meaning in saying that a certain variable of the system S takes
the value q : rather, there is meaning in saying that this variable takes the
value q for O, or with respect to O. The apparent contradiction between the
two statements that a variable has or does not have a value is resolved by
indexing the statements with the different systems with which the system
in question interacts. If I observe an electron at a certain position, I cannot
conclude that the electron is there: I can only conclude that the electron as
seen by me is there. The unique account of the state of the world of the
classical theory is thus fractured into a multiplicity of accounts, one for each
possible ‘observing’ physical system. That is:

Quantum mechanics is a theory about the physical description of
physical systems relative to other systems, and this is a complete
description of the world.

9.3 Consistency

This relativisation of actuality is viable thanks to a remarkable property of
the formalism of quantum mechanics.

John von Neumann was the first to notice that the formalism of the theory
treats the measured system S and the measuring system O differently, but
the theory is surprisingly flexible on the choice of where to put the boundary
between the two. Different choices give different accounts of the state of the
world (for instance, the collapse of the wave function happens at different
times); but this does not affect predictions concerning the final observations.
This flexibility reflects a general structural property of quantum theory which
guarantees the consistency among all the distinct ‘accounts of the world’ given
by the different observing systems. The manner in which this consistency is
realized, however, is subtle.

As a simple illustration of this phenomenon, consider the case in which
a system O with two states (say, an LED which can be on or off) interacts
with a two-state system S (say, the spin of the electron, which can be up or
down). Assume the interaction is such that if the spin is up (down) the LED
goes on (off). To start with, the electron can be in a superposition of its two
states. In the account of the state of the electron that we can associate with
the LED, the wave function of the electron collapses to one of two states
during the interaction, and the LED is then either on or off. But we can also
consider the LED/electron composite system as a quantum system and study
the interactions of this composite system with another system O′. In the ac-
count associated with O′, there is no collapse at the time of the interaction,
and the composite system is still in the superposition of the two states (spin
up/LED on) and (spin down/LED off) after the interaction. It is necessary
to assume this superposition because it accounts for measurable interference
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effects between the two states: if quantum mechanics is correct, these interfer-
ence effects are truly observable by O′. We thus have two discordant accounts
of the same events.

But can the two discordant accounts be compared and would such a com-
parison lead to contradiction? Indeed, they can be compared, because the
information on the first account is stored in the state of the LED and O′

has access to this information. Therefore O and O′ can compare their ac-
counts of the state of the world. However, the comparison does not lead to
contradiction because the comparison is itself a physical process that must
be understood in the context of quantum mechanics.

Indeed, O′ can interact physically with the electron and then with the
LED (or, equivalently, the other way around). If, for instance, he finds the spin
of the electron up, quantum mechanics predicts that he will then consistently
find the LED on, because in the first measurement the state of the composite
system collapses to its (spin up/LED on) component.

Hence, the multiplicity of accounts leads to no contradiction precisely be-
cause the comparison between different accounts can only be a physical quan-
tum interaction. This internal self-consistency of the quantum formalism is
general, and it is perhaps its most remarkable aspect.1 This self-consistency
is taken in relational quantum mechanics as a further indication of the rela-
tional nature of the world.

9.4 Correlation

What appears with respect to O as a measurement of the variable q (with a
specific outcome), appears with respect to O′ simply as a dynamical process
that establishes a correlation between S and O. As far as the observer O is
concerned, a property q of a system S has taken a certain value. As far as
the second observer O′ is concerned, the only relevant element of reality is
that a correlation is established between S and O.

Concretely, this correlation would appear in all further observations that
O′ would perform on the S + O system. That is, the way the two systems
S and O will interact with O′ is characterized by the fact that there is a
correlation. In other words, O′ will find some properties of O correlated with
some properties of S.
1 In fact, one may conjecture that this peculiar consistency between the observa-

tions of different observers is the missing ingredient for a reconstruction theorem
of the Hilbert space formalism of quantum theory. Such a reconstruction theo-
rem is still unavailable. On the basis of reasonable physical assumptions, one is
able to derive the structure of an orthomodular lattice containing subsets that
form Boolean algebras, which ‘almost’, but not quite, implies the existence of
a Hilbert space and its projector algebra. Perhaps an appropriate algebraic for-
mulation of the condition of consistency between subsystems could provide the
missing hypothesis to complete the reconstruction theorem.
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On the other hand, up to the time at which it interacts physically with
S + O, the system O′ has no access to the actual outcomes of the measure-
ments performed by O on S. This actual outcome is real only with respect
to O.

9.5 Information

The existence of a correlation between the possible outcomes of a measure-
ment performed by O′ on S and the outcomes of a measurement performed
by O′ on O can be interpreted in terms of information. In fact, it corresponds
precisely to Shannon’s definition of information. According to this definition,
the statement that O has information about S actually means that we shall
observe O and S in a subset of the set formed by the Cartesian product of
the possible states of O and the possible states of S. Thus, a measurement
of S by O has the effect that O has information about S, in this technical
sense, regarding the possible outcomes of the observations by a third system
O′.

On the other hand, if we interact a sufficient number of times with a phys-
ical system S, we can then predict (the probability distribution of the) future
outcomes of our interactions with this system. In this sense, by interacting
with S we can say we ‘have information’ about S. (This information need
not be stored or utilized, but its existence is the necessary physical condition
for being able to store it or utilize it for predictions.)

Therefore we have two distinct senses in which the physical theory is
about information. But a moment of thought shows that the two simply
reflect the same physical reality, as it affects two different systems. On the
one hand, O has information about S because it has interacted with S and the
past interactions are sufficient to ‘give information’ about future interactions.
On the other hand, O has information about S in the sense that there are
correlations in the outcomes of measurements that O′ can make on the two.

There is a crucial subtle difference, that can be figuratively expressed as
follows: O knows about S, while O′ only knows that O knows about S, but
does not know what O knows. As far as O′ is concerned, a physical interaction
between S and O establishes a correlation: it does not select an outcome.

But I think that these observations are sufficient to conclude that what
precisely quantum mechanics is about is the information that physical sys-
tems have about each other. This is the end point of the analysis in [1] and is
also the starting point of an attempt at a full reconstruction of the quantum
formalism in terms of information theory. I refer the reader to that paper.
Concerning this argument, see also [3] and the numerous references therein.
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9.6 The Reason for the Apparent Paradoxes

If the suggestions above are correct, the common uneasiness with taking
quantum mechanics as a fundamental description of nature (the measure-
ment problem) could then derive from the use of an incorrect notion, rather
like the uneasiness with the Lorentz transformations before Einstein derived
them from the notion of observer-independent time. The incorrect notion that
generates the uneasiness with quantum mechanics is the notion of observer-
independent state of a system, or observer-independent values of physical
quantities.

All systems can be assumed to be equivalent, there is no observer–
observed distinction, and the theory describes only the information that sys-
tems have about one another. Nevertheless, the theory is complete.

9.7 Is Quantum Relationalism
Connected with Spacetime Relationalism?

The relationalism at the core of quantum theory as pointed out by the rela-
tional interpretations may be connected with the spatiotemporal relational-
ism that characterizes general relativity. Quantum mechanical relationalism
is the observation that there are no absolute properties: properties of a sys-
tem S are relative to another system O with which S is interacting. General
relativistic relationalism is the fact that there is no absolute localization in
spacetime: localization of an object S in spacetime is only relative to the
gravitational field, or to any other object O, with which S is contiguous.

There is a connection between the two, since interaction between S and
O implies contiguity and contiguity between S and O can only be checked
via some quantum interaction. But because of the difficulty in developing
a consistent and conceptually transparent theory of quantum gravity, so far
this suggestion has not been developed beyond the stage of a simple intuition.

9.8 Final Comments

In physics, the idea of deepening our insight into the physical world by rela-
tivizing notions previously used as absolute has been applied repeatedly and
very successfully. Here are a few examples. The notion of the velocity of an
object has been understood as meaningless, unless it is indexed with a refer-
ence body with respect to which the object is moving. With special relativity,
simultaneity of two distant events has been understood as meaningless, un-
less referred to a specific state of motion of something. (This something is
usually called the ‘observer’ without, of course, any implication that the ob-
server is human or has any other peculiar property besides having a state of



120 Carlo Rovelli

motion. Similarly, the ‘observer system’ O in quantum mechanics need not be
human or have any other property beside the possibility of interacting with
the ‘observed’ system S.) With general relativity, the position of an object
in space and time has been understood as meaningless, unless it is referred
to the gravitational field, or to another dynamical physical entity.

The move proposed by the relational interpretations of quantum mechan-
ics has strong analogies with these, but is, in a sense, a much longer jump,
since all contingent properties of any physical system are taken to be mean-
ingful only as relative to a second physical system. The claim of the relational
interpretations is that this is not an arbitrary move. Rather, it is a conclusion
which is difficult to escape, following from the observation –explained above
in the example of the ‘second observer’ – that a variable (of a system S) can
have a well-determined value q for one observer O and at the same time fail
to have a determined value for another observer O′.

This way of thinking about the world certainly has heavy philosophical
implications. The claim of the relational interpretations is that it is nature
itself that is forcing us to this way of thinking. If we want to understand
nature, our task is not to frame nature into our philosophical prejudices, but
rather to learn how to adjust our philosophical prejudices to what we learn
from nature.
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10 Matrix Models
as Non-Local Hidden Variables Theories

Lee Smolin

The ideas that I am going to present here have to do with a certain kind
of hidden variables theories. In this sense the theory is in the tradition that
Hiley (Chap. 16) and ’t Hooft (Chap. ??) present in this volume. Like them,
I do not believe that QM is good enough to extend to a theory of the whole
universe, especially with regards to incorporating the dynamics of space and
time. If the foundational problems of QM and the problems of space and
time are intimately related, it should have something to do with the theory
of gravity.

This work has a strange history. When I was first at post doc, I thought I
might work on foundations of quantum mechanics, and I did some bad, ugly
version of what I am going to explain here. I wrote it up and I sent it to
the journal Physical Review and I got back a referee report which was from
Abner Shimony in which he said: “This is a wonderful paper, it should be
published just as soon as the author can clear up a few small points which I
am sure he will have no trouble doing.” There followed eighteen single-spaced
pages of objections and comments. People who know Abner can realize that I
never had the courage to send anything back again after that. So there ended
my career in foundations of quantum mechanics. It was a preprint in 1983,
and I am very happy for this opportunity to return to that idea.

The plan of this article is as follows. First I will motivate roughly why I
think that quantum gravity pushes us in the direction of some hidden vari-
ables theory. Next I will detail the formulation of a real hidden variables
theory, due originally to E. Nelson [1]. Then I will introduce a theory, partly
motivated by quantum gravity, and finally I will sketch the steps of the deriva-
tion of quantum mechanics from the proposed theory.

10.1 Motivation

Let me begin by pointing out that, in quantum gravity, there has been a lot
of progress. We know how to derive the black hole entropy to every epsilon
and every dot. There is a set of works which assume conditions that should
hold in a black hole horizon or cosmological horizon and derive the space of
states, given an explicit dynamical microscopic description of the states and
the observables at a horizon. Then, coarse-graining it by the usual methods,
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the Bekenstein–Hawking entropy is derived. And that is just one out of many
things that have happened. For us, therefore, the interpretational problems
are not academic.

For example, I grew up, if I can say so, listening to Jim Hartle talk about
the wave function of the universe and all the issues about how to observe it.
A few years later H. Kodama [2] wrote down a wave function of the universe
(the Chern–Simons state) which is an exact solution of the Wheeler–DeWitt
equation. Now this solution is as good as one can possibly imagine a wave
function of the universe to be. It is a state in real quantum field theory, and it
satisfies the Wheeler–DeWitt equation with full issues of regularization and
finiteness and so forth.

There are many others too. For example, Thomas Thiemann and others
have written down explicitly infinite dimensional spaces of them. We also have
a candidate for the physical inner product that was formulated by Rovelli [3]
using a technique known as spin foams. Again, it does not matter what it is –
it is computable. There are people like Dan Christensen, John Baez and others
who use computers to calculate approximations to these things, for example,
for very small universes. They worry about how to do renormalization group
calculations and so forth.

So we have pieces of a quantum theory of gravity. For us these are real
issues, not only because we are ambitious and we want to solve profound
problems, but because in order to have a discussion about the physical validity
of a theory, we have to talk about measuring real observables. And that raises
all the issues about observables and quantum theory and quantum cosmology
that Hartle raises (Chap. 5).

This brings us to the issue of hidden variables, and hence to Bohm and the
Hamilton–Jacobi equation. I am going to be adopting a particular point of
view about it, originally due to E. Nelson [1]. Now one reason for talking about
hidden variables is the issues that Hartle refers to, about how to do quantum
theory in a closed system in a cosmological context. Rovelli (Chap. 9) presents
another approach called relational quantum theory, and I think it is fair to
say that it is motivated by staring at expressions like the equations mentioned
above and asking what on earth we can do with them.

Rovelli’s relational quantum mechanics is uncannily reminiscent of the
ideas put forward by ’t Hooft, which indeed arose at about the same time.
So I will address here only the slogans and leave it to their articles to explain
how this idea really makes sense. The slogans are that there is no quantum
state or Hilbert space of the universe but rather that there is a Hilbert space
for each division of the world into observer and system. ’t Hooft, and at about
the same time, Louis Crane, argued that the quantum states should live on
the boundaries of systems. Actually, ’t Hooft argues that a Hilbert space has
something to do with the boundary, and that there is a dimension roughly of
the Hilbert space for each Planck area on the boundary up to a constant. So
it is for a finite area boundary and it is a finite-dimensional Hilbert space.
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That raises the question of how to incorporate the idea that there are
many different Hilbert spaces in a quantum theory of spacetime. Is it just
any way we want to divide it? Does the dynamics of spacetime tell us how
to divide the world up into systems and observers? One proposal of Fotini
Markopoulou was that the division can be made by the causal structure,
which is a characteristic thing in spacetime. A local observer cannot see the
whole universe but can only see the information coming from their causal
past. Markopoulou proposed that this division (which Rovelli, ’t Hooft, Crane
and others were also talking about) should involve the causal structure in-
trinsically. There is, roughly speaking, a Hilbert space for every causal past
of the universe. Hartle and Isham’s work has been very influential in this
respect. Their work on topos theory and quantum theory gives us confidence
that there is a mathematical framework to fit these ideas into.

But then there is a problem. In a quantum theory of spacetime, as well
as in classical general relativity, everything is dynamical; everything is up
for grabs. There is no fixed background structure. Therefore, that particular
proposal that the boundaries, the regions we describe quantum-mechanically,
have to do with causal structure, runs into a terrible problem: the causal
structure is generated dynamically by the evolution of the gravitational field.
So it is not something that sits outside the dynamics but rather inside it.
Therefore, attempts like those of Hartle and Isham to wed these ideas to
a sophisticated mathematical structure run into difficulties. There is a big
silence in the literature as to what to do about the fact that, in general rela-
tivity, the causal structure is dynamical. Does this mean that the structure of
quantum theory, the algebras, observables and the states, are themselves gen-
erated dynamically? Now one might want to reply in the affirmative, but for
some of us that is a scary thought, although that is one direction to go from
here. That is one conundrum that pushes us beyond conventional quantum
theory.

Another conundrum is related to quantum gravity. One might like to say
that quantum gravity is just like ordinary quantum mechanics. So at some
point we are going to have a path and a growth, and we are going to have a
thing which is a history, and we are supposed to sum over the histories and
express this in many different ways. Now this is the old Feynman idea: we are
supposed to sum over the histories in order to get the quantum amplitudes.
That is similar to the spin foam approach which Rovelli has worked so much
on [3]. Another approach due to Renata Loll and Jan Ambjørn and collab-
orators is called the dual formulation of spin network evolution, and these
things are closely related. People write down explicit proposals for what is
a path and what is a growth for a real theory of quantum spacetime. But
then the problem is the appearance of i here, because we are summing over
amplitudes which are complex numbers. And the thing we are summing over
is the causal structures, which now include the causal structures of space-
time. Again, a lot of progress has been made here. One can go to authors like
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Mike Reisenberger, John Barett, Louis Crane, Carlo Rovelli and John Baez,
and find quite explicit expressions for this, derived from general relativity in
different ways. So we have a theory of quantum gravity and now we have to
calculate with it.

How are we supposed to sum over all these complex numbers? When we
usually face this in ordinary quantum mechanics and quantum field theory,
the instruction given is to continue the time variable to i times the time
variable. This becomes the exponential of minus a Hamiltonian for a classical
statistical mechanics system in one higher dimension. We then just treat it
like a statistical mechanics system.

However, the problem is that, because we are summing over the causal
structure, time is not necessarily defined for the whole structure. We have to
work to define it. Not to mention the fact that this is general relativity, or
related to general relativity, and there is no well-defined time on each history.
How we do the continuation is an issue. We can make a choice. Renata Loll
and Jan Ambjørn do this, in what I think is very important work, because
they actually manage to calculate some things. They do it by making on each
history a choice of a time variable and by making each continuation with that
choice, and they get very interesting and surprising answers. But still, they
get something that should worry us because it is not at all obvious that
the answers that they got are not fixing some notion of time in a way that
relativity might be unhappy with. So that is another conundrum. We seem to
be either forced to have preferred notions of time or to face the problem that
physicists have never faced, namely, that this is really a sum over complex
numbers, and what Feynman wrote down really does not make any sense as
a sum over complex numbers.

Now this is the point when somebody usually stands up and says: “Oh
well, string theory solves everything.” But unfortunately, it does not! In fact,
this theory is a strange beast. It is a very interesting research program, full of
ideas and ambition, but as a body of results, it is a collection of theories which
is opposed to what I have been talking about, because they are background-
dependent. That is, each string theory requires a classical background space-
time to define it in the first place. So there are many background-dependent
string theories, each defined as an expansion around a classical spacetime
background.

Now, there is a conjecture known as theM theory conjecture which says
that there is a real theory behind all of that, in the same sense that if we
read Bjorken and Drell [4], we can see that in the 1960s people were spec-
ulating that there really was something called quantum field theory behind
the perturbation theory of QED. In the second volume [5], they attempted to
define it. Similarly, there is a conjecture that there exists a ‘second volume’
of string theory, analogous to the second volume of Bjorken and Drell. The
conjecture says that there is one background-independent theory, to which
the classical backgrounds of general relativity of space and time emerge as
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classical solutions. Interestingly, at least in several popular formulations of
this idea, the degrees of freedom are just a collection of matrices, since there
is no spacetime.

I first got involved in this with Richard Levine, who was a student in
Imperial College and who is now a student with Rovelli, when we tried to
quantize these theories. What we wanted to do, and imagined that we were
doing, was to quantize this theory of matrices. What we were actually doing,
however, was picking a classical solution to the theory which defined the
spacetime background and quantizing with respect to the causal structure
and the definition of time, and so forth, on that classical background. And
neither we nor anybody else were able to determine how to make a quantum
theory related to string theory in which we did what must be the right thing.
We did not know whether this ambition of unifying them together was right,
i.e., we did not know whether one should quantize the whole theory first
and then study different semi-classical solutions to it, or alternatively, have a
classical theory, study different classical solutions to it, and define a spacetime
on each classical solution.

So that is another reason why quantum theory seems to be failing us.
Perhaps all these things in quantum gravity are telling us that QM breaks
down. Perhaps at some point we should just stop hitting our head against
the wall and imagining that one day somebody will come along and tell us
how to solve these problems.

Here I could have mentioned the problems of black holes and the effect of
causal structure on quantum theory, as ’t Hooft has done (Chap. ??). And
those also weigh very heavily on us. This also does not get us anywhere.
It is one thing to observe that quantum mechanics breaks down, and quite
another to know what to do about it. The question is: does the way in which
it seems to be breaking down give any hints for what lies beyond quantum
theory? That is what I am talking about, and I want to explore the point of
view that, maybe, the theory which QM breaks down to has something to do
with matrices. I take as first evidence for this the fact that string theory, loop
quantum gravity and spin foams, as well as some work of Rovelli and others,
can be expressed in terms where the degrees of freedom are big matrices.
And there is a model in which the matrices interact with each other, and
indeed, Rovelli et al. showed how we can get quantum spacetime as defined
in diagrams in the expansion of the theory of some set of matrices.

Now Anton Zeilinger made the following comment to me: Suppose I have
a theory where the degrees of freedom are matrices, and I am supposed to
take these matrix models and quantize them. Yet the degrees of freedom are
matrices. Now if I quantize that, I am just going to get bigger matrices in
which each matrix element of these matrices gets blown up to a bigger matrix.
But a matrix of matrices is just a matrix!

So maybe I already have the quantum theory in there, especially since
I let these matrices get very big. Maybe, then, the quantum theory of the
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matrices is already hidden in the classical theory of the matrices? After all,
our attempts are to make the theory invariant under either orthogonal trans-
formation (if they are real) or unitary transformation. That is supposed to
be a symmetry of the quantum theory, but the theory is already invariant
under those symmetries.

Allow me to give a hand-waving argument why a theory behind quantum
theory might be a theory of matrices. As we know, Bell’s theorem and the
experiments tell us that quantum theory is supposed to be non-local. Rovelli
and in a different way ’t Hooft tell us that the quantum theory has to do with
relations between different parts of the universe, maybe crossing a boundary,
as in ’t Hooft’s way of thinking. Similarly, the spacetime of general relativity is
about relationships. It is not an absolute fixed structure as in the Newtonian
space and time. So maybe the fundamental theory is also supposed to be
about relationships? And if it is supposed to be about relationships, perhaps
the degrees of freedom should be not one, two or three degrees of freedom
for each entity, telling us where it is in the background spacetime, which is
non-dynamical; instead, maybe there should be degrees of freedom between
pairs of entities, telling us how they relate to each other. And that is how
I would argue that the fundamental theory is a theory of matrices. We may
think that we have N particles in some D-dimensional space, and talk about
some list of their position vectors. But then, maybe, fundamentally, we want
to just talk about relationships amongst those entities and construct space
itself from a theory of relationships. And that is really where, a long time
ago, I started with the theory where the hidden variables were graphs. The
fact that quantum theories of gravity, like string theory and spin foams, can
be formulated in terms of matrices, seems to be deep, realizing the relational
character of space and time. That is what was in the paper that was never
published, which I mentioned at the beginning.

So this problem of the background dependence of the quantizations is a
major problem for string and M theory. As the theory classically has many
solutions, which define different spacetime backgrounds, it seems that there
ought to be a background-independent way to define the quantum theory.
If the fundamental theory is a quantum theory the different quantizations
defined around the different backgrounds should be approximations to a single
exact quantum theory.

This is part of the motivation for the present proposal. Perhaps the
background-independent theory is not a conventional quantum theory, but
some deeper theory, which can be approximated by conventional quantum
theories when the state defines a fixed spacetime background. Such a theory
might be approached in different ways, but here we investigate the hypothesis
that it might be a hidden variables theory. As we will show, the hint from
earlier work is correct, and a matrix model of the kind studied in string and
M theory can serve as a non-local hidden variables theory which can then
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reproduce a quantum theory for the eigenvalues of the matrices to leading
order in 1/N .

That is, rather than quantizing the classical matrix model in some con-
ventional fashion, we will simply assume that the off-diagonal elements of the
matrix model are in a classical thermal state. We will find that the quantum
theory for the eigenvalues can be reproduced so long as the temperature is
scaled in a certain way with N . This formulation of the quantum theory is
by definition background-dependent, because the definition of the thermal
ensemble makes no reference to any particular classical solution.

To see how this happens it is useful to consider the diagonal elements of
the matrices, which become increasingly free at low temperatures, as anal-
ogous to the pollen grains in classical Brownian motion. The off-diagonal
elements are then analogous to the molecules whose constant collisions with
the grains cause them to move with a Brownian motion. Indeed, the diagonal
elements are subject to random forces from their interactions with the off-
diagonal elements. The off-diagonal elements are small at low temperature,
but as we increase N their effects on the diagonal elements are greater due
to their greater number. The result is that the interaction of a diagonal el-
ements with a large number of off-diagonal elements introduces a Brownian
motion, which is transferred to a Brownian motion of the eigenvalues at low
temperature. That is, the randomness of the local variables – the diagonal
elements and the eigenvalues – is due to their interactions with a much larger
number of non-local variables.

To find interesting behavior, we have to scale T in an appropriate way
with N as we take the former to zero and the latter to infinity. In fact,
we find that the model behaves critically when we scale the temperature so
that T ≈ 1/N . In this case the off-diagonal matrix elements are of order
1/
√

N . However their collective effects on the diagonal elements, and hence
the eigenvalues, remain as N → ∞. One such effect is that the diffusion
constant which measures the Brownian motion of the eigenvalues remains
finite as N →∞.

Of course, the idea that quantum statistics might just be ordinary statis-
tics in an unusual context is an old one. In particular, Nelson [1] has proposed
a stochastic formulation of quantum theory, according to which the quantum
description of a particle is derived by modifying the classical description
solely by the addition of a universal Brownian motion, which satisfies cer-
tain special properties. Chief amongst them is that the Brownian motion
is non-dissipative, in that energy and momentum are still conserved. Nelson
shows in [1] that, when a classical particle is subject to such a non-dissipative
Brownian motion, its probability density and current evolve in a way which
is equivalent to that given by the Schrödinger equation.

Nelson’s formulation plays a key role in the present work, in that we show
that the stochastic formulation of quantum theory is recovered to leading
order in 1/N , for the eigenvalues of the matrices in our model. (Note that
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one can quantize the free bosonic string directly using Nelson’s stochastic
quantum theory [6].)

In the present paper we study a bosonic matrix model, and show that it
is indeed a non-local hidden variables theory. The extensions of this work to
the supersymmetric matrix models associated with string andM theory are
in progress with Stephon Alexander [7].

In the next section we describe a variational principle related to Nelson’s
formulation of quantum theory and review the basics of the theory of Brown-
ian motion for those unfamiliar with it. In Sect. 10.3, we introduce the matrix
model we will study and in Sect. 10.4, we describe the basic physical picture
which suggests the connection between the classical statistical mechanics of
the matrix model and quantum theory. In Sect. 10.5, we estimate the de-
pendence of the relevant diffusion constants on N , T and other parameters.
Finally, the derivation of the Schrödinger equation for the eigenvalues is given
in Sect. 10.6.

10.2 Hamilton–Jacobi Theory
and Quantum Brownian Motion

To set things up we have to introduce Nelson’s work [1], which is not easy
for a non-mathematician to understand, so I have rewritten it in terms of
Hamilton–Jacobi theory. Although this is partly done in Nelson’s own papers,
so I do not claim any great originality for this, there is one new idea that I did
not see in Nelson’s papers, which I call the statistical variational principle.
But let us begin with Hamilton–Jacobi theory.

Consider a dynamical system living on an n-dimensional configuration
space coordinatized by xa. The dynamics can be described in terms of a
Hamilton–Jacobi function S(x, t), which solves the Hamilton–Jacobi equation

Ṡ +
1

2m
(∂aS)2 + U = 0 . (10.1)

A particular solution S defines a family of classical trajectories whose mo-
menta at any point xa are defined by

pa(x) = ∂aS . (10.2)

There are many solutions to the Hamilton–Jacobi equation, each of which
defines a congruence of classical trajectories. A statistical description of the
system may be given in terms of a probability density ρ(x, t) and a probability
current va(x, t), which together satisfy

ρ̇ + ∂a(ρva) = 0 . (10.3)

Since the probability is conserved, we may always assume
∫

dnxρ(x, t) = 1.
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Now we will do something unusual. Let us restrict attention to an en-
semble of classical trajectories whose evolution is determined by a particular
solution S of the Hamilton–Jacobi equation. We may call this an S-ensemble.
These have a probability density ρS(x, t). Since the momentum is determined
by S, so must be the probability current. We then have

mva = ∂aS , (10.4)

so that the probability conservation equation is now

ρ̇ +
1
m

∂a(ρ∂aS) = 0 . (10.5)

The restriction of attention to a statistical ensemble with fixed solution S is
unusual, but it does not take us out of the domain of classical physics. The
total probability density may be recovered formally as

ρtotal =
∑
S

ρS , (10.6)

where the sum is over all solutions to the Hamilton–Jacobi function. Of
course, the probability current does not add.

We now observe that such ensembles are given by the solutions of a simple
variational principle:

I[ρ, S] =
∫

dt

∫
dnxρ(x, t)

[
Ṡ +

1
2m

(∂aS)2 + U(x)
]

. (10.7)

The equations that arise from varying ρ and S are, respectively, the Hamilton–
Jacobi equation (10.1) and the probability conservation equation (10.5).
Thus, the variational principle describes an ensemble of trajectories, each
of which evolves according to the Hamilton–Jacobi equation, so that the cur-
rent velocity is proportional to ∂aS. We note further that the action and
equations of motion are invariant under time reversal with

t→ −t , S → −S , ρ→ ρ . (10.8)

So here is a variational principle where the variables are a probability dis-
tribution and a Hamilton–Jacobi function, and the equations of motion tell us
that the Hamilton–Jacobi equation is true, and they tell us that probability is
conserved for particles that follow the flow of the Hamilton–Jacobi function.
I call it the statistical variational principle. Now various people’s ideas, in-
cluding Bohm’s theory, can be expressed by saying that we add a term called
the quantum potential in (10.7), and then we get the same conservation law
as before, but we get this new quantum Hamilton–Jacobi equation that Hiley
refers to (Chap. 16). They follow from the variational principle. Introducing
� in an appropriate way, we get the Schrödinger equation [see (10.24) and
(10.25) below].
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Although this is a well charted ground, I think it is very important and
should not be forgotten. The good thing about thinking about quantum
physics this way is that conservation of probability is automatic because ρ
was always a probability distribution. We automatically have this symmetry
that we can add a constant to the Hamilton–Jacobi function and that just
changes the phase. But now we have two questions: a big question and an
annoying question. The big question is: Where does this quantum potential
term come from? The annoying question is: How did S really become a phase?
That is, is it really a phase? If we had a configuration space with non-trivial
topology, we would really have to worry that it was a phase. And people who
want to be annoying ask that question. But I will save it till the end.

Now, Nelson had an answer to the big question. He said that we can forget
the question of quantum spacetime! The quantum potential has a natural
explanation in terms of the theory of Brownian motion. I think this is a neat
idea. To explain it, let us recall that the basic idea of Brownian motion is that
we are dealing with a particle which is subject to noise. Therefore trajectories
are not smooth. Of course, we really want to think that they are not smooth
on some coarse-grained scale but may be smooth on some smaller scale. There
are complications here that need careful treatment when we study the theory
of Brownian motion. However, from a physical point of view, this just means
that we have to distinguish between taking a derivative to the future and
taking a derivative to the past.

So Nelson’s stochastic version of quantum theory may be formulated in
the language we introduced above. To do this we assume that in addition to
the classical motion, the particles in our ensemble are subject to a Brownian
motion. This Brownian motion is, however, unusual, in that it does not alter
the condition that each trajectory in the ensemble is governed by the same
solution of the Hamilton–Jacobi equation. We will see that this requirement
can be met by making a slight alteration to the Hamilton–Jacobi equation
itself, to take into account the fact that trajectories undergoing Brownian
motion are not differentiable. Nelson calls the resulting Brownian motion dis-
sipationless Brownian motion, as energy and momentum are still conserved.
To describe this dissipationless Brownian motion we may use the language
of stochastic differential equations (for reviews see [1]). In this language the
small change in time of a trajectory is given by

Dxa = ba
(
x(t), t

)
dt + ∆wa , dt > 0 , (10.9)

for small positive changes in time and

D∗xa = −b∗a
(
x(t), t

)
dt + ∆w∗a , dt < 0 , (10.10)

for small negative changes in time. ba and b∗a are called the forward and
backward drift velocities. They describe the average motion of the particles
in the ensemble. They are defined by
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ba(x, t) = lim
∆t→0

〈
xa(t + ∆t)− xa(t)

∆t

〉
x(t)=x

(10.11)

and

b∗a(x, t) = lim
∆t→0

〈
xa(t)− xa(t−∆t)

∆t

〉
x(t)=x

. (10.12)

The different elements of the ensemble are distinguished by their Brownian
motion, which is given by a Markov process defined by〈

∆wa∆wb
〉

= −
〈
∆w∗a∆w∗b

〉
= νdtqab (10.13)

and 〈
∆wa∆w∗b

〉
= 0 . (10.14)

Here qab is a metric on the configuration space and ν is the diffusion constant.
The averages 〈. . . 〉 are defined with respect to the ensemble. Thus, for any
function F (x) on the phase space

〈F 〉 =
∫

dnxρ(x, t)F (x) . (10.15)

From these basic definitions, one can easily derive the forward and backward
Fokker–Planck equations

ρ̇ = −∂a(ρba) + ν∇2ρ , ρ̇ = −∂a(ρb∗a)− ν∇2ρ . (10.16)

The current conservation equation follows from these with

va =
1
2
(ba + b∗a) . (10.17)

The difference between the forward and backward drift velocities is called the
osmotic velocity. From the Fokker–Planck equation, it satisfies

ua =
1
2
(ba − b∗a) = ν∂a ln ρ . (10.18)

We thus see that the diffusion constant measures the extent to which the
paths are non-differentiable, so that the forward and backward drift velocities
are not equal. This is of course possible because they are defined in (10.11)
and (10.12) in such a way that the limit ∆t→ 0 is taken after averaging over
the ensemble.

Hence, the key thing is that we average over the ensemble before we
take the limit ∆t → 0. And the key point about Brownian motions is that
they are not equal because of the noise. So we can average the forward and
the backward velocity, and that gives us the current velocity, which is what
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comes into the conservation law for probability. But we can also take the
difference and show that the difference between them, the osmotic velocity,
is always proportional to the gradient of the probability distribution, plus a
constant which is called the diffusion constant. Hence, this is the key thing:
the diffusion constant measures how much averaging into the future and
averaging into the past are different in the theory of Brownian motion.

Now what Nelson noticed is that, if we take �/2m for the diffusion con-
stant in (10.13), then the sum of the ordinary kinetic energy, mv2/2, plus the
quantum potential, is just the current velocity squared plus the osmotic ve-
locity squared, times the mass over two. So the key idea is that we can unify
the quantum potential energy with the ordinary kinetic energy by thinking
about Brownian motion and by hypothesizing that, underlying all that, we
are dealing with a particle which has an irreducible Brownian motion on
the configuration space. And if we worry about non-locality, etc., the whole
point is that the motion is Brownian and on the configuration space. So Nel-
son says that the transition from classical to quantum realm is due only to
the presence of this noise.

Let us see how to formulate this. We want to preserve the property (10.4)
that the current velocity is proportional to the gradient of the Hamilton–
Jacobi function, but we want to find a way to include Brownian motion within
the ensemble defined by a particular Hamilton–Jacobi function. One way to
approach this is to modify the statistical variational principle to include the
effects of Brownian motion. It is not hard to see that this is possible, and
that the right extension of the variational principle is

Iν [ρ, S] =
∫

dt

∫
dnxρ(x, t)

[
Ṡ +

1
2m

(∂aS)2 +
mν2

2
(∂a ln ρ)2 + U(x)

]
.

(10.19)

To see why let us use the fact that ∂aS is proportional to the momentum.
Thus we have for smooth motion, on solutions to the variational principle,∫

dt

∫
dnxρ(x, t)

1
2m

(∂aS)2

=
∫

dt

∫
dnxρ(x, t)

1
2m

(pa)2

=
∫

dt

∫
dnxρ(x, t)

m

2
(ẋa)2

=
∫

dt

∫
dnxρ(x, t)

m

2
lim

∆t→0

[
xa(t + ∆t)− xa(t)

∆t

]2
.

However, for a Brownian motion process, the limit in the last line is not
defined. So this is not a consistent variational principle when ν �= 0. To
define a variational principle that is well defined for the case of Brownian
motion where the paths are non-differentiable we need to take the limit that
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defines the derivative outside of the ensemble average. Thus, we may define
instead∫

dt

∫
dnxρ(x, t)

1
2m

(pa)2

≡
∫

dt lim
∆t→0

∫
dnxρ(x, t)

m

2

[
xa(t + ∆t)− xa(t)

∆t

]2
.

This form of the integrand appears, however, to lack invariance under time
reversal (10.8). This is because, when the paths are non-differentiable, ba and
b∗a may not be equal. However, we notice that under the time integral we
can write∫

dt lim
∆t→0

∫
dnxρ(x, t)

m

2

[
xa(t + ∆t)− xa(t)

∆t

]2
=
∫

dt lim
∆t→0

∫
dnx

m

4

{
ρ(x, t)

[
xa(t + ∆t)− xa(t)

∆t

]2

+ρ(x, t−∆t)
[
xa(t)− xa(t−∆t)

∆t

]2}
.

Now we observe that

ρ(x, t−∆t) = ρ(x, t)−∆tρ̇(x, t) . (10.20)

As ρ̇(x, t) is given by the Fokker–Planck equation, the second term leads to
terms that are well behaved and vanish as ∆t → 0. Thus, we can take the
average and then the limit, using (10.11) and (10.12) to find∫

dt lim
∆t→0

∫
dnxρ(x, t)

m

2

[
xa(t + ∆t)− xa(t)

∆t

]2
=
∫

dt

∫
dnxρ(x, t)

m

4
[
(ba)2 + (b∗a)2 + C

]
=
∫

dt

∫
dnxρ(x, t)

m

2
[
(va)2 + (ua)2 + C

]
.

Here C is an infinite constant, which is equal to

C = νd lim
∆t→0

1
∆t

. (10.21)

Thus, we have found that we can extract an infinite constant from the action,
leaving us with a finite piece that is well defined and time-reversal invariant.
So we have,
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dt lim

∆t→0

∫
dnxρ(x, t)

m

2

[
xa(t + ∆t)− xa(t)

∆t

]2
=
∫

dt

∫
dnxρ(x, t)

[
1

2m
(∂aS)2 +

mν2

2
(∂a ln ρ)2

]
+

mC

2
.

Constants, even infinite constants, play no role in classical action principles.
Hence, putting this last result back in the definition of the action principle,
we see that the effect of exchanging the order of the integral and the limit
is the new action principle (10.19). Thus we see that while we can have a
Brownian motion within the trajectories defined by a given Hamilton–Jacobi
functional, the definition of Brownian motion requires that we modify the
Hamilton–Jacobi equation, so that we have a consistent variational principle,
even in the presence of non-differentiable paths.

From the argument just given we see that the variational principle (10.19)
is equivalent to defining the time derivatives so that they are taken outside
the ensemble averages. This yields the standard variational principle when
the trajectories are smooth, because then it does not matter in which order
we take the limits involved in the definition of the time derivatives and the
ensemble average. But for non-differentiable paths the order matters and we
see that we must take the limit defining the time derivative after that defining
the ensemble average. As we have seen, up to an infinite constant which may
be ignored, this is equivalent to adding the new term

mν2

2
(∂a ln ρ)2

to the variational principle.
The new Hamilton–Jacobi equation follows from (10.19) by varying by ρ.

We find that

Ṡ +
1

2m
(∂aS)2 − 2mν2 1

√
ρ
∇2√ρ + U = 0 . (10.22)

The Hamilton–Jacobi functional is thus modified by a new potential term
which is a function of the probability density. We recall that this unusual fea-
ture follows because it is the gradient of the probability density that measures
the importance of the non-differentiability of the paths. The probability con-
servation, however, is not modified. Now, the big surprise is that (10.22) and
(10.5) are nothing else than the real and imaginary parts of the Schrödinger
equation, with

Ψ(x, t) =
√

ρ(x, t)eiS/� (10.23)

and with

� = 2νm . (10.24)
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Thus, the variational principle (10.19) in the presence of Brownian motion is
equivalent to

i�
dΨ(x, t)

dt
=
[
− �

2

2m
∇2 + U(x)

]
Ψ(x, t) . (10.25)

One way to understand this is the following. From the point of view presented
here, a quantum state is nothing more nor less than an ordinary statistical
ensemble of Brownian motion trajectories, which share a single Hamilton–
Jacobi function S, where that S is itself a solution to a modified Hamilton–
Jacobi equation, modified to take into account the change in the definition
of the momentum necessary when the motion is Brownian. This is the basic
message of Nelson’s stochastic quantum theory.

We can find a Hamiltonian formulation of the statistical variational prin-
ciple. To this end note that (10.19) can be written

Iν [ρ, S] =
∫

dt

∫
dnx
(
Sρ̇−H[ρ, S, x]

)
, (10.26)

where the Hamiltonian density is

H[ρ, S, x] = ρ

[
1

2m
(∂aS)2 +

mν2

2
(∂a ln ρ)2 + U(x)

]
. (10.27)

Thus we see that the probability density ρ can be considered as a conju-
gate coordinate with S its conjugate momentum, so that we have an infinite
dimensional phase space with

{ρ(x), S(x′)} = δn(x′, x) . (10.28)

The Hamiltonian

H =
∫

dnxH (10.29)

is then conserved in time. It is easy to check that Hamilton’s equations of
motion are the Hamilton–Jacobi equation (10.22) and the probability conser-
vation equation (10.5). We note that this is true for any value of the diffusion
constant ν so that this is true in both classical and quantum theory. To get
more insight into how the linearity of quantum theory has emerged from the
theory of Brownian motion, we can write out the conserved Hamiltonian:

H =
∫

dnxρ

[
1

2m
(∂aS)2 +

mν2

2
(∂a ln ρ)2 + U(x)

]
. (10.30)

This seems a very non-linear expression, and yet it is nothing but the expec-
tation value of a linear operator. To see this we rewrite it slightly as
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H =
∫

dnx
√

ρe−iS/�

[
1

2m
(∂aS)2 − 2mν2∇2√ρ

√
ρ

+ U(x)
]
√

ρeiS/� . (10.31)

Using (10.23) and (10.24), this is easily seen to be equal to

H =
∫

dnxΨ̄ĤΨ , (10.32)

with

Ĥ = − �
2

2m
∇2 + U(x) . (10.33)

Thus, the very non-linear seeming equation Ḣ = 0 is seen to be actually
equivalent to the linear Schrödinger equation. We also see that the conserved
Hamiltonian which arises from the statistical variational principle is exactly
equal to the expectation value of the Hamiltonian operator in the quantum
theory. Thus, the conservation of the Hamiltonian in the statistical variational
principle is equivalent to the conservation of the expectation value of the
Hamiltonian operator in the quantum theory.

Now the aim in what follows is to recover Nelson’s idea from a matrix
model of the hidden variables theory. Here lies the novelty. The question is
this: If Nelson is right, we are supposed to explain the source of this noise.
Where does the noise come from? That is what this theory is about.

10.3 Matrix Model

We study a bosonic matrix model which is the bosonic part of the models
used in string andM theory [8–11]. The degrees of freedom are d N ×N real
symmetric matrices X j

ai , with a = 1, . . . , d and i, j = 1, . . . , N . The action
is

S = µ

∫
dtTr
{

Ẋ2
a + ω2[Xa, Xb][Xa, Xb]

}
. (10.34)

We choose the matrices Xa to be dimensionless. ω is a frequency and µ has
dimensions of mass × length2. We do not assume � = 1. In fact, as we aim
to derive quantum mechanics from a more fundamental theory, � is not yet
meaningful. We will introduce � as a function of the parameters of the theory
when we derive the Schrödinger equation as an approximate evolution law.
We may note that the parameters of the theory define an energy ε = µω2.

The basic idea is that the off-diagonal matrix elements of Xa will be
the non-local hidden variables. The physical observables will be defined to
be the eigenvalues λa

i of the matrices. We will put the system at a small,
but finite temperature, the result of which will be that the matrix elements
undergo Brownian motion as they oscillate in the potential. It follows from
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linear algebra that the eigenvalues also undergo Brownian motion. We will
see that the parameters of the theory can be scaled with N in such a way
that Nelson’s stochastic formulation of quantum mechanics is realized for the
eigenvalues. When T = 0, the matrices must commute with each other so as
to achieve the vanishing of the potential energy. This means that it is possible
to simultaneously diagonalize them. When T is finite, but small compared to
ε, the off-diagonal elements will on average be small. As a result, it is useful
to split the matrices into diagonal and off-diagonal pieces:

X j
ai = D j

ai + Q j
ai , (10.35)

where Da = diagonal(da
1 , . . . , da

N ) is diagonal and Q j
ai has no diagonal ele-

ments. Since the Q j
ai are dimensionless, we will expect them to scale as a

power of T/µω2. We then write the action (10.34) as

S =
∫

dt
(
Ld + LQ + Lint) . (10.36)

The theory of the d’s alone is free,

Ld = µ
∑
ai

(ḋa
i )2 , (10.37)

while the theory of the Q’s alone has the same quartic interaction,

LQ = µ

⎧⎨⎩∑
aij

(Q̇ j
ai)

2 + ω2[Qa, Qb][Qa, Qb]

⎫⎬⎭ . (10.38)

The interaction terms between the diagonal and off-diagonal elements are

Lint = 2µω2
∑
abij

{
− (da

i − da
j )2(Q j

bi )
2 − (da

i − da
j )(db

i − db
j)Q

j
aiQ

i
bj (10.39)

+2(da
i − da

j )Qbj
i [Qa, Qb] i

j

}
.

We note that the model has a translation symmetry given by

da
i −→ da

i + va . (10.40)

The result is that the center of mass momentum of the system is conserved.

10.4 The Physical Picture

In the following we will show that the ordinary statistical physics of the model
in the last section has a critical behavior when the off-diagonal sector is heated
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to finite temperature and the large N limit is taken with the temperature
scaled so that T ≈ 1/N . We will further see that a feature of the critical
behavior in this limit is to reproduce quantum mechanics. That is, to leading
order in 1/N the evolution of the probability density and current for the
eigenvalues of the matrixes is equivalent to that given by the free Schrödinger
equation.

To show this we will apply what we have learned in Sect. 10.2 to the matrix
model. We will formulate an S-ensemble for the matrix model in terms of the
statistical variational principle. At the fundamental level the dynamics is
formulated in terms of the variational principle without Brownian motion,
i.e., the simple variational principle (10.7). Thus, the whole matrix model
is in an ordinary statistical ensemble. In the next section we will study the
behavior of the matrix model at low temperature and large N . We see that
when we pick T ≈ 1/N , the off-diagonal elements scale as 1/

√
N . This makes

sense as they must go to zero at T = 0. We also see that to leading order
the off-diagonal elements move harmonically in an average field given by the
average values of all the other off-diagonal elements. The diagonal elements
are not required to vanish as T → 0, so they remain of order unity. However,
the diagonal elements move in a random potential given by the oscillations
of all the off-diagonal elements. The result is that the diagonal elements pick
up a random Brownian motion on top of their free motion. This Brownian
motion is then also experienced by the eigenvalues. We will see that when the
model is scaled critically, the diffusion constants for the diagonal elements
and eigenvalues go to constant limits as N →∞ and T → 0.

We then want to study the effect of the Brownian motion of the eigen-
values. To do this we derive an effective statistical action for the probability
distribution of the eigenvalues by averaging the statistical variational princi-
ple for the whole model over the values of the matrix elements. This is the
task of Sect. 10.6. We see that the Brownian motion term in (10.19) emerges
naturally as a term in the effective statistical action for the eigenvalues, as a
result of the induced Brownian motion just described. Furthermore, in that
limit the conserved energy of the variational principle of the whole model
reduces to the conservation of the expectation value of the free Hamiltonian
operator for the eigenvalues. Thus, in the large N limit, Nelson’s stochas-
tic formulation of quantum theory emerges naturally as a description of the
statistical behavior of the eigenvalues.

10.5 Estimates for the Diffusion Constants
at Low Temperature

In this section we investigate the consequences of putting the matrix model
in a thermal bath at a temperature T . We have two tasks. The first is to
understand how various quantities of interest scale with T and N , at low
temperatures. The second is to derive estimates for the diffusion constants
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for the matrix elements and eigenvalues that are good for low temperature
and large N . By low temperature T , we will mean that the ratio T/µω2 is
small. It will be convenient to scale this ratio with N , so we define

T

8(d− 1)µω2 =
t

Np
, (10.41)

with t dimensionless and p a power. The factor of 8(d−1) is inserted for later
convenience. We begin by recalling how the potential is written in terms of
diagonal and off-diagonal elements [see (10.39)].

U(d, Q) = Lint = µω2Tr
{
− 2(di

a − dj
a)(dai − daj)QbijQ

bij

+ 2(di
a − dj

a)(dbi − dbj)QbijQ
aji

+ 4(di
a − dj

a)Qbij [Qa, Qb]ji + [Qa, Qb]2
}

.

The classical equations of motion are then

d̈i
a = ω2

{
− 8(di

a − dj
a)QbijQ

bij + 8(dbi − dbj)QbijQ
aji (10.42)

+8Qbij [Qa, Qb]ji + 4
[
Qb, [Qa, Qb]

]
ij

}
and

Q̈a
ij = ω2

{
− 4
[
δa
b (di

a − dj
a)2 − (di

a − dj
a)(dbi − dbj)

]
Qb

ij (10.43)

+4(di
a − dj

a)Q2
bij − 8(di

b − dj
b)[Qa, Qb]ij

}
.

Now we will consider how each matrix element moves in an effective potential
created by the averaged motions of the other elements. To see this we make
a mean field approximation, good at large N . We assume that the statistical
averages satisfy relations consistent with the symmetry of the theory. This
gives us

〈Qij
a Qkl

b 〉 = q2δab(δikδjl + δilδjk) , (10.44)

〈(di
a − dj

a)(dk
b − dl

b)〉 = r2δab(δikδjl − δilδjk) , (10.45)

〈Qaij〉 = 〈di
a〉 = 〈dQ〉 = 〈Q3〉 = 〈d3〉 = 0 . (10.46)

We assume also that averages of four matrix elements factor into pairs of
averages of two in all ways. Our goal will be to solve for the value of q when
the off-diagonal elements are in a thermal bath. We now write out the effective
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potential for the matrix elements moving in the averaged fields of the other
elements, to quadratic order. This gives us,

〈U〉 =
µΩ2

Q

2
QaijQ

aij +
µΩ2

d

2
(di

a − dj
a)2 , (10.47)

with

Ω2
Q = 4(d− 1)ω2[(N − 1)q2 + 2r2] , Ω2

d = 4(d− 1)ω2q2 . (10.48)

Thus, each off-diagonal element moves in a harmonic potential created by the
averaged values of the other elements. The diagonal elements are, to leading
order, a system of points, each connected to all the others by springs with
the same spring constant. We will make no assumption about the statistical
distribution of the diagonal elements. We will see that this is consistent as
long as p is chosen so that the diagonal spring constant Ωd vanishes as N →
∞. We will assume that the Qaij are in thermal equilibrium with each other.
This implies that, at temperature T ,

µ

2
q2Ω2

Q =
T

4
, (10.49)

which tells us that

T

8(d− 1)µω2 = (N − 1)q4 + 2r2q2 . (10.50)

Now let us assume that we can neglect the term in r2q2 for estimating the
order of magnitudes of quantities and the dependence on N . This will be
consistent so long as r2 ≤ Nq2. We then arrive at the estimate that, for large
N ,

q =
1

N1/4

[
T

8(d− 1)µω2

]1/4

= t1/4 1
N (p+1)/4 . (10.51)

We see that, for p = 1, it is true that Nq2 is of order unity, so this is consistent
also with r being of order unity as N → ∞ and T → 0. Note that we now
have

Ω2
Q = 4ω2(d− 1)[2r2 +

√
tN (1−p)/2] . (10.52)

Hence, for ΩQ not to diverge as N → ∞, we must have p ≥ 1. We then see
that p = 1 corresponds to a critical point at which ΩQ is fixed as N → ∞.
We also see from (10.51) that this corresponds to q ≈ 1/

√
N and

Ω2
d

Ω2
Q

=
q2

Nq2 + 2r2 =
1

N + 2r2/q2 . (10.53)
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Therefore, if we choose p = 1 so that ΩQ is fixed in the limit N → ∞, then
in the same limit Ωd vanishes, so the diagonal elements remain free in the
mean field approximation. From now on, unless otherwise specified, we will
take p = 1.

Now we would like to estimate the effects on the matrix elements of the
fluctuations around the thermal averages for small temperature and large N .
Let us consider for example the contribution of the last term in (10.42) to
the motion of di

a. We have, neglecting the other terms,

d̈i
a = 4ω2

∑
bj

[
Qb, [Qa, Qb]

]
ij

. (10.54)

Counting the commutators, this is a sum of dN3 terms, for each a and i.
These add with random signs. Each impulse of a fixed sign lasts an average
time of Ω−1

Q , as this is the time over which the values of the Qaij oscillate.
The result is that di

a has a random Brownian motion on top of the free motion
given by the N → ∞ limit. To estimate the diffusion constant that results
note that if, in a time ∆t, the average displacement resulting from the random
forces is ∆d, the diffusion constant is

νd =
(∆d)2

∆t
. (10.55)

If atotal is the total acceleration given by the sum of the random forces over
the time ∆t, we have ∆d = atotal(∆t)2/2. Thus, we have

νd =
1
4
a2
total(∆t)3 . (10.56)

For atotal we may take

atotal = ω2q3
√

N3d , (10.57)

because we are adding N3d terms with random signs and average magnitude
ω2q3. Taking ∆t = Ω−1

Q , we have, for large N ,

νd =
ωd

4(d− 1)3/2

q3N3/2(
1 +

2r2

Nq2

)3/2 =
ωt3/4d

4(d− 1)3/2N3(p−1)/4

1(
1 +

2r2

Nq2

)3/2 .

(10.58)

So we see that if we pick p = 1, and so long as 2r2 is of order one, the diffusion
constant for the diagonal elements goes to a limit which is N -independent and
hence T -independent as N → ∞ and T → 0. Under these same conditions
we can show that as N →∞ these terms make the dominant contribution to
the random forces on the diagonal elements coming from (10.42). A similar
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analysis starting from (10.43) allows us to estimate the diffusion constant for
the Q’s coming from the random forces to be

νQ = ω
r2t

N7p/4+5/4 . (10.59)

The result is that for p ≥ 1, νQ vanishes in the limit N → ∞. Now a
classic result of random matrix theory is that if the matrix elements of a
matrix undergo Brownian motion, so do its eigenvalues. In a case like ours
it is clear, as the eigenvalues will be close to the diagonal values, that the
off-diagonal values vanish as N → ∞. But we have to be careful about the
contributions from higher order terms in perturbation theory. By making use
of the standard formula

λa
i = da

I +
∑

j

Qa
ijQ

a
ji

da
i − da

j

+ · · · , (10.60)

we can show that the diffusion constant for the eigenvalues is given by

νλ = νd +
NνQq2

r2 + · · · ≈ ω

[
t3/2d

4(d− 1)3/2N3(p−1)/4 +
t3/2

N9p/4+3/4

]
. (10.61)

This tends to νd as N → ∞. Thus, we see that the dominant contribution
to the Brownian motion of the eigenvalues comes from the Brownian motion
of the diagonal elements. These in turn are fluctuating because they are
perturbed by their interactions with the off-diagonal elements, which are
moving in a harmonic potential, created by their averaged values at finite
temperature. The result is that a randomness is introduced into the motions
of the eigenvalues, coming from the interactions of the diagonal elements with
a very large number of random variables, which are the off-diagonal elements.

This then illustrates that idea that a local degree of freedom can have its
motion randomized by interaction with a large number of non-local degrees
of freedom. In the next section we will see that this may result in behavior
that for large N is indistinguishable from that predicted by the Schrödinger
equation.

10.6 Derivation of the Schrödinger Equation

We are now ready to derive the Schrödinger equation for the eigenvalues of
the matrices. As we described above this is a three-step process:

• Step 1. Formulate the statistical variational principle for the matrix
model.

• Step 2. Make assumptions about the statistical ensemble. In particular,
we assume that the model is in an S-ensemble, heat it to finite tempera-
ture T and then study the large N limit with T ≈ 1/N .
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• Step 3. Derive an effective statistical variational principle for the eigen-
values by averaging over the variational principle of the matrix elements
and show that, when N →∞, this is equivalent to the Schrödinger quan-
tum theory for the eigenvalues.

Step 1: Statistical Variational Principle for the Matrix Model

We begin by defining an S-ensemble for the matrix elements. That is, we
begin with the variational principle

I[ρ, S] =
∫

dt

∫
dd dQρ(d, Q, t) (10.62)⎧⎨⎩Ṡ(d, Q) +

1
2µ

[
δS(d, Q, t)

δda
i

]2
+

1
2µ

[
δS(d, Q, t)

δQa
ij

]2
+ U(d, Q)

⎫⎬⎭ ,

where U(d, Q) is the interaction term Lint given by (10.39).

Step 2: Physical Assumptions

We now state the physical assumptions we make concerning ρ and S. These
are assumed only to hold to leading order in 1/N :

• The Q system is in a distribution that is, to leading order in 1/N , sta-
tistically independent of the distribution of the eigenvalues. This means
that to leading order the probability density factorizes:

ρ(d, Q) = ρd(d)ρQ(Q) + O(1/N) . (10.63)

• The Q subsystem is in thermal equilibrium at a temperature T . So we
have

ρQ(Q) =
1
Z

e−H(Q)/T , (10.64)

where H(Q) is the Hamiltonian corresponding to the Q system alone, viz.,

H(Q) = µ

⎧⎨⎩∑
aij

(Q̇ j
ai)

2 − ω2[Qa, Qb][Qa, Qb]

⎫⎬⎭ , (10.65)

and

Z =
∫

dQe−H(Q)/T . (10.66)
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As a result of these assumptions, our variational principle reads

I[ρd, S, T ] =
∫

dt

∫
dd dQρd(d)ρQ(Q) (10.67)⎡⎣Ṡ(d, Q) +

1
2µ

(
δS

δda
i

)2

+
1
2µ

(
δS

δQa
ij

)2

+ U(d, Q)

⎤⎦ .

Step 3: Derive an Effective Variational Principle
for the Eigenvalues

Now we want to derive an effective variational principle to describe the evo-
lution of the probability distribution for the eigenvalues. We will do this by
averaging the variational principle (10.67) over the values of the matrix el-
ements, and then extracting the leading behavior for large N and small T .
We begin by inserting the factor unity in the form

1 =
∫ ∏

ai

dλa
i δ

⎛⎝λa
i − da

i −
∑

j

Qa
ijQ

a
ji

da
i − da

j

+ · · ·

⎞⎠ . (10.68)

Thus, we have

I[ρd, S, T ] =
1
Z

∫
dt

∫
dd dQ

∫
dλδ

⎛⎝λa
i − da

i −
∑

j

Qa
ijQ

a
ji

λa
i − λa

j

+ · · ·

⎞⎠
ρde−H(Q)/T

⎡⎣Ṡ +
1
2µ

(
δS

δda
i

)2

+
1
2µ

(
δS

δQa
ij

)2

+ U(d, Q)

⎤⎦ .

Now we would like to integrate over the d’s, which will express the action in
terms of only the λ’s and Q’s. However, before doing this we need to take
into account that, to the order we are working, the d’s and the λ’s will be
undergoing Brownian motion because the diagonal elements are moving in a
random potential given by the values of the Q’s. There are also additional
contributions to the diffusion constant coming from the terms in Q that con-
tribute to the eigenvalues at higher order. So we will have to be careful about
the definitions of the velocities. In particular, we will have to recall that in
the theory of stochastic processes the limits which define time derivatives are
taken after the averages over probability distributions, not before. Therefore,
as before, we must write
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dt

∫
dd dQρd(d)ρQ(Q)

1
2µ

(
δS

δda
i

)2

=
∫

dt dd dQρd(d)ρQ(Q)µ
(
V (d)a

i

)2
=
∫

dt lim
∆t→0

∫
dd dQρd(d)ρQ(Q)µ

([
da

i (t + ∆t)− da
i (t)
]2

∆t2

)

=
∫

dt lim
∆t→0

∫
dd dQρd(d)ρQ(Q)

µ

2

{([
da

i (t + ∆t)− da
i (t)
]2

∆t2

)

+

([
da

i (t)− da
i (t−∆t)

]2
∆t2

)}
.

Note that the last equation follows trivially, for smooth motion, but it will
have non-trivial consequences once we have averaged over the Q’s because the
result for large N is to induce Brownian motion for the off-diagonal elements
and eigenvalues. Now we perform the integral over the d’s. It is useful to write

da
i = λa

i + ∆λa
i , (10.69)

where

∆λa
i (Q, λ) = −

∑
j

Qa
ijQ

a
ji

λa
i − λa

j

+ · · · (10.70)

has to be treated as a stochastic variable, taking into account its dependence
on the Q’s, which are themselves fluctuating due to the assumption that they
are in equilibrium in a potential. We then have, to leading order in 1/N ,

I[ρd, Sd, T ] =
∫

dt

∫
dλρd(λ, t)

∫
dQρQ(Q)⎧⎨⎩Ṡ(λ + ∆λ, Q) +

1
2µ

[
δS(λ + ∆λ, Q)

δQa
ij

]2
+ U(λ, Q)

⎫⎬⎭+ K.E. ,

where, to leading order, the kinetic energy terms for the d’s have become,

K.E. =
∫

dt lim
∆t→0

∫
dλρd(λ, t)

∫
dQρQ(Q)

µ

2

{[
λa

i (t + ∆t)− λa
i (t)
]2

∆t2
+

[
λa

i (t)− λa
i (t−∆t)

]2
∆t2

}
.

We are now ready to integrate over the Q’s. The key point is that the depen-
dence of the λ’s on the Q’s through a sum of a large number of independent
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terms,
∑

j Qa
ijQ

a
ji/(da

i − da
j ), as well as the coupling of the λ’s with the Q’s

coming from the terms in U(λ, Q), turns the λ’s into stochastic variables,
described by a stochastic differential equation of the form

Dλa
i = ba

i (λ, t)dt + ∆λa
i , ∆t > 0 , (10.71)

Dλa
i = b∗a

i (λ, t)dt + ∆∗λa
i , ∆t < 0 , (10.72)

with

〈∆λa
i ∆λb

j〉 = δabδijνλdt , dt > 0 , (10.73)

〈∆∗λa
i ∆∗λb

j〉 = −δabδijνλdt , dt < 0 . (10.74)

Here the brackets mean

〈F (λ, Q)〉 =
∫

dQρQ(Q)F (λ, Q) . (10.75)

We note that we can use the value of νλ given by (10.61), computed in the
last section, as all the assumptions we made there have been carried over
here, so long as we work to leading order in 1/N with T scaled as T ≈ 1/N .
We also have, from the Fokker–Planck equations, that the current velocity is

va
i (λ) =

1
2
(ba

i + b∗a
i ) , (10.76)

while the osmotic velocity is

ua
i (λ) =

1
2
(ba

i − b∗a
i ) = νλ

δ ln ρλ

δλa
i

. (10.77)

From these, we can derive

lim
∆t→0

∫
dQρd(λ, t)ρQ(Q)

1
2

([
λa

i (t + ∆t)− λa
i (t)
]2

∆t2

)
= ρd(λ, t)

[
ba
i (λ, t)2 + NC

]
and

lim
∆t→0

∫
dQρd(λ, t)ρQ(Q)

1
2

([
λa

i (t)− λa
i (t−∆t)

]2
∆t2

)
= ρd(λ, t)

[
b∗a
i (λ, t)2 + NC

]
,

where C is the infinite constant we defined in (10.21).
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To go further we need to define the effective Hamilton–Jacobi function
for the eigenvalues. We define

Sλ(λ) =
∫

dQρQ(Q)S(λ, Q) . (10.78)

We now show that, to leading order in 1/N ,

µva
i =

δSλ(λ)
δλi

a

. (10.79)

Consider the probability conservation law that follows from the statistical
variational principle that defines the dynamics of our matrix model, viz.,
(10.62):

ρ̇(d, Q) = − 1
µ

{
δ

δdai

[
ρ(d, Q)

δS(d, Q)
δdai

]
+

δ
δQaij

[
ρ(d, Q)

δS(d, Q)
δQaij

]}
.

(10.80)

But using (10.63) and (10.64), we have

ρ̇(d, Q) = ρ̇d(d)ρQ(Q) . (10.81)

By the same assumptions, since a thermal distribution is stationary and has
no current velocity, we also have

vaij(Q) =
1
µ

δS(d, Q)
δQaij

= O(1/N) . (10.82)

Thus, integrating over the Q’s,

ρ̇d(d) = − 1
µ

δ
δdai

[
ρd(d)

δ
δdai

∫
dQρQ(Q)S(d, Q)

]
+ O(1/N) . (10.83)

To leading order we can replace the dependence on dai everywhere with
dependence on λai, since the terms by which they differ are also higher order
in 1/N . We then have

ρ̇d(λ) = − 1
µ

δ
δλai

[
ρd(λ)

δSλ(λ)
δλai

]
+ O(1/N) . (10.84)

But by (10.76), we must have

ρ̇d(λ) = −δρd(λ)vai(λ)
δλai

. (10.85)

This establishes (10.79). With this result we have the key relation that
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µ

2
(b2 + b∗2) =

µ

2
(v2 + u2) =

{
1
2µ

[
δSλ(λ)

δλa
i

]2
+

µν2
λ

2

[
δ ln ρλ(λ)

δλa
i

]2}
.

(10.86)

We also define

EQ =
∫

dQρQ(Q)

⎧⎨⎩ 1
2µ

[
δSQ(Q)

δQa
ij

]2
+

µω2

2
Tr[Q, Q]2

⎫⎬⎭ (10.87)

and

µ

2
Ω2

d

∑
aij

(λa
i − λa

j )2 =
∫

dQρQ(Q)U int(λ, Q) . (10.88)

We can estimate that EQ = TN(N − 1)/4 ≈ Nµω2, so this is a divergent
constant in the limit. The result is

I[ρd, S, T ] =
∫

dt

∫
dλ
[
ρd(λ, t)Ṡλ −Heff(Sλ, ρd, T )

]
, (10.89)

where the effective Hamiltonian for the eigenvalues is

Heff(Sλ, ρλ, T ) = ρd(λ)

(
E′

Q +

{[
1
2µ

δSλ(λ)
δλa

i

]2
+

µν2
λ

2

[
δ ln ρλ(λ)

δλa
i

]2}

+
µΩ2

d

2

∑
aij

(λa
I − λa

j )2
)

and E′
Q = EQ + NµC contains both infinite constants. The resulting equa-

tions of motion are

E′
Q + Ṡλ +

1
2µ

[
δSd(λ)

δλa
i

]2
+

µΩ2
d

2

∑
aij

(λa
I − λa

j )2 + Uquantum = 0 , (10.90)

and the current conservation equation

ρ̇λ = − 1
µ

∂aiρλ(∂aiSλ) . (10.91)

The so-called quantum potential is given by

Uquantum = µν2
λ

{[
δ ln ρλ(λ)

δλa
i

]2
+

1
ρλ

∂ai(ρλ∂ai ln ρλ)

}

= −µν2
λ

1√
ρλ(λ)

∇2
√

ρλ(λ) . (10.92)
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These we recognize as the real and imaginary parts of the Schrödinger equa-
tion, when we write

Ψ(λ, t) =
√

ρλeSλ/� , (10.93)

with

� = µνλ = µω
t3/2d

4(d− 1)3/2 . (10.94)

So, finally, we have in the limit N →∞,

i�
dΨ(λ, t)

dt
=

⎡⎣− �
2

2µ

δ2

δ(λa
i )2

+
µΩ2

d

2

∑
aij

(λa
I − λa

j )2 + E′
Q

⎤⎦Ψ(λ, t) . (10.95)

Finally, by repeating the argument in our Hamiltonian formulation on p. 135,
we can show that the conserved energy of the original theory splits into two
pieces:

H = HΨ + E′
Q , (10.96)

where

HΨ =
∫

dλΨ̄

⎡⎣− �
2

2µ

δ2

δ(λa
i )2

+
µΩ2

d

2

∑
aij

(λa
I − λa

j )2

⎤⎦ψ . (10.97)

Since E′
Q is an infinite constant the result is that HΨ , which is the quantum

mechanical energy, is conserved as N → ∞. We can then renormalize the
wavefunctional so that

Ψr(λ) = eiE′
Qt/�Ψ(λ) . (10.98)

Finally, we note that as Ω2
d ≈ 1/N the eigenvalues become free in the limit

N → ∞. Thus, when N → ∞, the probabilities evolve according to the free
Schrödinger equation

i�
dΨr(λ, t)

dt
=

[
− �

2

2µ

δ2

δ(λa
i )2

]
Ψr(λ, t) . (10.99)

10.7 Conclusion

We may summarize what has been done in the following way. To get near-
diagonal behavior in our matrices, we take the whole system and raise it to a
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finite temperature T . When we do that, we excite the off-diagonal elements.
This potential is bounded from below and the minima are attained when the
matrices are diagonal. So if we excite the off-diagonal elements, they can be
thought of as N2 objects moving around in this potential at low temperature.
The trick is to take the value of N , the dimension of the matrices, to infinity,
while taking the temperature to zero. What we have then is a kind of critical
phenomenon exactly when we take the temperature to zero as 1/N .

The key thing is that when N is large, each off-diagonal degree of freedom
lives in a harmonic potential with some harmonic frequency which is related
to the expectation value of the Q’s, and that the expectation value of the Q’s
is in turn related to the temperature, which goes like 1/N . When all this is
brought together, the average size of the Q’s goes like 1/

√
N . The harmonic

frequency turns out to go just like Ω2, the fundamental coupling constant
of the theory. The diagonal elements also live in harmonic potentials but it
turns out that their frequency goes like 1/N . They live in a harmonic potential
created by all the elements, and basically there are N2 off-diagonal elements
which are moving around and creating all the noise. We may say that the
diagonal elements are moving in a kind of a bath created by the off-diagonal
elements. The harmonic frequency of the diagonal elements, however, turns
out, when you scale it that way, to involve a factor of 1/N . Therefore, in
the limit N → ∞, the harmonic frequency of the off-diagonal elements is
constant, tuning the temperature like 1/N , and the harmonic frequency of
the diagonal elements goes to zero. We thus recover a situation in which there
is no potential for the motion of the diagonal elements but there is a potential
created by all the random motions for the off-diagonal elements. This in turn
happens because there are more and more off-diagonal elements, even if we
take the size of each one of them to zero as we take the temperature to zero.

Furthermore, because of the way that all the N2 off-diagonal elements
feed into the equations of motion for both the diagonal and off-diagonal
elements, there is noise, so there are diffusion constants. What we see is that
the diffusion constant for the diagonal elements also goes just like the coupling
constant and does not go to zero or to infinity, but just stays constant as we
take N to infinity. We are then left with Nelson’s irreducible noise in that
limit.

The idea is that the off-diagonal elements have effectively decoupled. They
are moving amongst themselves in some complicated, ever-changing harmonic
potential. The diagonal elements do not feel a potential, but only noise. In-
deed, the strange thing about Nelson’s hypothesis was that we have a source
of noise which does not violate the conservation of energy averaged over the
ensemble. So the idea was to generate a system where we could explain a
source of noise which moved the classical variables around without system-
atically draining or inputting energy. In fact, we have reformulated Nelson’s
idea, without doing anything new apart from the technical items detailed
above.
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What we have shown here may be summarized by saying that matrix
theory may not only give rise to string theory, and hence gravity, but it may
also give rise to quantum theory, in the sense that the quantum evolution of
the eigenvalues may appear, at large N , to be a consequence of the classical
statistical physics of the matrices. We have shown that we can obtain a
formula for � in terms of the fundamental parameters of a more fundamental,
hidden variables theory [see (10.94)].

This means that we may be able to solve the daunting conceptual prob-
lems of quantum theory by means of a simple physical hypothesis: that the
theory of gravity and hence spacetime arises from a non-local background-
independent theory in which geometry initially plays no role and the physical
degrees of freedom represent relational rather than intrinsic properties. There
remain many open questions. A short list is:

• Is it possible to extend these results to the supersymmetric models that
arise in string theory [7]?

• Is it possible that the existence of dualities that connect certain quantum
field theory observables to the classical limit of string theory are related to
the fact that the classical matrix theory can in a certain limit reproduce
a quantum theory?

• How does Lorentz invariance and relativistic causality arise in the ma-
trix models which describe relativistic string and membrane theories, and
how is this compatible with the non-local dynamics of the off-diagonal
elements?

• Can this be extended to truly background-independent matrix models,
such as the cubic matrix models and the matrix models which have been
developed for spin foams [3]?

• Are there any practical experimental predictions that follow from these
theories?
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11 Towards a General Operational
and Realistic Framework
for Quantum Mechanics and Relativity Theory

Diederik Aerts and Sven Aerts

We propose a general operational and realistic framework that aims at a
generalization of quantum mechanics and relativity theory, such that both
appear as special cases of this new theory. Our framework is operational, in
the sense that all aspects are introduced with specific reference to events to be
experienced; and realistic, in the sense that the hypothesis of an independent
existing reality is taken seriously.

To reach this framework we present a detailed study of standard quan-
tum mechanics within the axiomatic approach to quantum mechanics, more
specifically the Geneva–Brussels approach, identifying two of the traditional
6 axioms as ‘failing axioms’. We prove that these two failing axioms are at the
origin of the impossibility for standard quantum mechanics to describe a con-
tinuous change from quantum to classical and hence its inability to describe
macroscopic physical reality. Moreover we show that the same two axioms
are also at the origin of the impossibility for standard quantum mechanics to
deliver a model for the compound entity of two ‘separated’ quantum entities.
We contend that these two axioms must be replaced in order to proceed to
the more general theory.

Next we analyze the nature of the quantum probability model and show
that it can be interpreted as a consequence of a lack of knowledge about
the interaction between the measurement apparatus and the physical entity
under consideration. These two insights, the failing axioms and the nature of
quantum probability, give rise to a very specific view concerning the quantum
phenomenon of nonlocality. Nonlocality should be interpreted as nonspatial-
ity. This means that an entity in a nonlocal state, such as the typical EPR
state, is not ‘inside space’. As a consequence, space is no longer the all-
embracing theatre of reality, but a structure that has emerged together with
the macroscopic material entities that have emerged from the microworld.
This clarifies why general relativity theory cannot be used as a basis for the
elaboration of the new generalized theory, since in general relativity theory
the set of events is taken a priori to be the time–space continuum. Hence, in
general relativity theory, time–space is a basic structure considered to cap-
ture all of reality. In our framework we introduce ‘happenings’ and the ‘set
of happenings’ as constituting reality. However, a happening is not identified
with a point of time–space, as is the case for an event in general relativity
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theory. We analyze different aspects of the new framework, and list the most
important problems to be investigated if this framework is to be made into
a workable theory which is as complete as possible.

11.1 Introduction

Quantum mechanics, even after so many years of reflection by the bright-
est scientists of our day, still confronts us with really fundamental problems.
While microscopic effects predicted by it have been experimentally verified,
they remain irreconcilable with macroscopic reality. Moreover some of these
effects are incompatible with the other major theory of modern physics,
namely, relativity, thereby introducing a deep schism at the very basis of
mainstream science. In this article we focus on the following question: What
kind of theory can be envisaged to replace quantum mechanics as a better
description of physical reality?

We believe that very fundamental changes will take place from a theoret-
ical point of view in the decades to come, and that what is now referred to
as standard quantum mechanics1 will be looked upon as a special case of a
more general theory still to be developed. When this new theory exists, we
will then also understand why standard quantum mechanics gave such good
predictions for experiments performed with quantum entities. Of course, gen-
eral relativity should also appear in some way as a special case of the new
theory to be developed.

One of the reasons why it is so difficult to develop the new theory is
that general relativity and quantum mechanics are fundamentally different
theories as regards the way they were constructed. General relativity is a
masterpiece of conscious construction starting from deep physical principles
and simple but very general ideas, such as the equivalence of gravitational
and inertial mass, and, from a foundational standpoint, was mainly the work
of one person, Albert Einstein. Quantum mechanics, however, has grown out
of a complex configuration of problems, guided by strange metaphors, such as
the wave–particle duality, and abstract mathematics, such as matrix calculus
and the Hilbert space formalism. Hence, it is no wonder that the theories are
basically very different and very difficult to integrate.

The approach to quantum mechanics that we have been elaborating, and
that will also be the inspiration for our ideas on the future of quantum me-
chanics and the nature of the new theory, is not the most commonly known
approach. There are several reasons for this, but one of them is certainly that
it is very different from the approaches that start more straightforwardly from
quantum mechanics and/or relativity theory as they are formulated in their
standard form. In the sections to follow we will outline our approach and also
1 We call the theory formulated by John von Neumann in 1934 standard quantum

mechanics [1].
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point out why we think that it contains a great potential to help in gener-
ating the framework for a new theory that could integrate relativity theory
and quantum mechanics.

11.2 Operational Axiomatic Quantum Mechanics

The framework that we develop has roots in the work of John von Neumann,
in collaboration with Garett Birkhoff, that is almost as old as the standard
formulation of quantum mechanics itself [2]. Indeed, even during the first
years of quantum mechanics, the formalism that is now referred to as standard
quantum mechanics [1] was thought to be too specific by the founding fathers
themselves. One of the questions that was obviously at the origin of this early
dissatisfaction is: Why would a complex Hilbert space deliver ‘the’ unique
mathematical structure for a complete description of the microworld? Would
that not be amazing? What is so special about a complex Hilbert space that
its mathematical structure would play such a fundamental role?

Let us turn for a moment to general relativity to raise a suspicion about
the fundamental role of the complex Hilbert space for quantum mechanics.
General relativity is founded on the mathematical structure of Riemann ge-
ometry. In this case, however, it is much more plausible that the right mathe-
matical structure has indeed been adopted. Riemann developed his theory as
a synthesis of the work of Gauss, Lobaskjevski and Bolay on non-Euclidean
geometry, and his aim was to work out a theory for the description of the
geometrical structure of the world in all its generality. Hence, Einstein had
recourse to the work of Riemann to express his ideas and intuitions on space-
time and its geometry and this lead to general relativity. General relativity
could be called in this respect the geometrization of a part of the world
including gravitation.

There is, of course, a definite reason why von Neumann used the mathe-
matical structure of a complex Hilbert space for the formalization of quantum
mechanics, but this reason is much less profound than it is for Riemann geom-
etry and general relativity. The reason is that Heisenberg’s matrix mechanics
and Schrödinger’s wave mechanics turned out to be equivalent, the first being
a formalization of the new mechanics making use of l2, the set of all square
summable complex sequences, and the second making use of L2(R3), the set of
all square integrable complex functions of three real variables. The two spaces
l2 and L2(R3) are canonical examples of a complex Hilbert space. This means
that Heisenberg and Schrödinger were already working in a complex Hilbert
space, when they formulated matrix mechanics and wave mechanics, without
being aware of it. This made it a straightforward choice for von Neumann to
propose a formulation of quantum mechanics in an abstract complex Hilbert
space, reducing matrix mechanics and wave mechanics to two specific cases.

One problem with the Hilbert space representation was known from the
start. A (pure) state of a quantum entity is represented by a unit vector or
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ray of the complex Hilbert space, and not by a vector. Indeed vectors con-
tained in the same ray represent the same state or one has to renormalize
the vector that represents the state after it has been changed in one way
or another. It is well known that if rays of a vector space are called points
and two-dimensional subspaces of this vector space are called lines, the set of
points and lines corresponding in this way to a vector space form a projective
geometry. What we just noted about the unit vector or ray representing the
state of the quantum entity means that in some way the projective geom-
etry corresponding to the complex Hilbert space represents the physics of
the quantum world in a more intrinsic way than the Hilbert space itself. This
state of affairs is revealed explicitly in the dynamics of quantum entities, built
up using group representations, and one has to consider projective represen-
tations, which are representations in the corresponding projective geometry,
and not vector representations [3].

The title of the article by John von Neumann and Garett Birkhoff [2]
that we mentioned as the founding article for our approach is The Logic of
Quantum Mechanics. Let us explain briefly what Birkhoff and von Neumann
do in this article. First of all, they note that an operational proposition of
a quantum entity is represented in the standard quantum formalism by an
orthogonal projection operator or by the corresponding closed subspace of the
Hilbert space H. Let us denote the set of all closed subspaces of H by P(H).
Next Birkhoff and von Neumann show that the structure of P(H) is not that
of a Boolean algebra, the archetypical structure of the set of propositions in
classical logic. More specifically, it is the distributive law between conjunction
and disjunction

(a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c) , (11.1)

which is not necessarily valid for the case of quantum propositions a, b, c ∈
P(H). A whole line of research, called quantum logic, was born as a conse-
quence of the Birkhoff and von Neumann article. The underlying philosoph-
ical idea is that, in the same manner as general relativity has introduced
non-Euclidean geometry into the reality of the physical world, quantum me-
chanics introduces non-Boolean logic. The quantum paradoxes would be due
to the fact that we reason with Boolean logic about situations with quantum
entities, while these situations should be reasoned about with non-Boolean
logic.

Although fascinating as an idea and worth taking seriously [4], it is not
this idea that is at the origin of our approach. A more important aspect of
what Birkhoff and von Neumann did in their article, not to be found in the
title, is that they shifted attention to the mathematical structure of the set
of operational propositions P(H) instead of the Hilbert space H itself. In
this sense it is important to pay attention to the fact that P(H) is the set
of all operational propositions, i.e., the set of yes/no experiments on a quan-
tum entity. They opened a way to connect abstract mathematical concepts
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of the quantum formalism, namely the orthogonal projection operators or
closed subspaces of the Hilbert space, directly to physical operations in the
laboratory, namely the yes/no experiments.

George Mackey followed this idea when he wrote his book on the mathe-
matical foundations of quantum mechanics [5]. He started from the other end
and considered as a basis the set L of all operational propositions, meaning
propositions that are testable by yes/no experiments on a physical entity. He
then introduced as the axiom that this set L has to have a structure isomor-
phic to the set of all closed subspaces P(H) of a complex Hilbert space in the
case of a quantum entity. He stated that it would be interesting to invent a
set of axioms on L that would gradually make L more and more like P(H),
so as to arrive eventually at an isomorphism when all the axioms were satis-
fied. While Mackey was writing his book, such work was already underway.
A year later Constantin Piron proved a fundamental representation theorem.
Starting from the set L of all operational propositions of a physical entity
and introducing five axioms on L, he proved that L is isomorphic to the set
of closed subspaces P(V ) of a generalized Hilbert space V whenever these
five axioms are satisfied [6]. Although we do not want to get too technical,
we have to elaborate on some of the aspects of this representation theorem
to be able to explain our framework.

We have already mentioned that Birkhoff and von Neumann had noticed
that the set of closed subspaces P(H) of a complex Hilbert space H is not a
Boolean algebra, because distributivity between conjunction and disjunction
is not satisfied [see (11.1)]. However, the set of closed subspaces of a complex
Hilbert space does form a lattice, which is a more general mathematical
structure than a Boolean algebra. Moreover, a lattice where the distributivity
rule (11.1) is satisfied is a Boolean algebra, which indicates that the lattice
structure is the one to consider for the quantum mechanical situation. As
we will see in more detail later, and to make the connection with general
relativity once again, the lattice structure is indeed to a Boolean algebra what
general Riemann geometry is to Euclidean geometry. And in the process,
we have understood why the structure of operational propositions of the
world is not a Boolean algebra but a lattice. This is strictly due to the fact
that measurements can have an uncontrollable influence on the state of the
physical entity under consideration. We will explain this insight in detail
later on, but mention it already now, so that it is clear that the intuition of
Birkhoff and von Neumann, and later Mackey, Piron and others, although
only mathematical intuition at that time, was correct.

When Piron proved his representation theorem in 1964, he concentrated
on the lattice structure for the formulation of the five axioms. Meanwhile
much more research has been done, motivated both physically, in an attempt
to make the approach more operational, and mathematically, in trying to
get axiomatically closer to the complex Hilbert space. In the presentation of
our framework, we give the most recent update of it, and hence somewhat
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neglect the original formulation, e.g., when we explain the representation
theorem due to Piron.

But before outlining our approach, we want to explain why we think that
this approach holds the potential to generate the framework for the new the-
ory to be developed, generalizing quantum mechanics and relativity theory.
General relativity is a theory that brings part of the world, which in earlier
Newtonian mechanics was classified within dynamics, into the geometrical
realm of reality. More specifically, it confronts us with the pre-scientific and
naive realistic vision of space, time, matter and gravitation. It teaches us in
a deep and new way, compared to Newtonian physics, what things exist, how
they exist, how they are related, and how they influence each other.

But there is one striking deficiency in relativity theory: it does not take
into account the influence of the observer, the effect that the measuring ap-
paratus has on the thing observed. It does not confront the subject–object
problem and its influence on reality. It cannot do this because its mathe-
matical apparatus is based on the Riemann geometry of time–space, hence
introducing the prejudice that time–space is actually there, filled up with
fields and matter, which are also there independently of the observer. There
is no fundamental role for the creation of ‘new’ within relativity theory, ev-
erything just ‘is’ and we are only there to ‘detect’ how this everything ‘is’.

This is also the reason why general relativity can easily be interpreted
as delivering a model for the whole universe, whatever this may mean. We
know that quantum mechanics takes into account in an essential way the
effect of the observer through the measuring apparatus on the state of the
physical entity under study. In the new theory to be developed, this effect
should certainly also appear in a fundamental way. We believe that general
relativity has explored in great depth the question of how things can ‘be’ in
the world. The theory that we develop explores in great depth the question of
how things can ‘act’ in the world. And it does explore this question of ‘action
in the world’ in a very similar manner to the way general relativity theory
does with its question of ‘being of the world’. This means that our approach
can be seen as the development of a general theory of actions in the world, in
the same manner that Riemann’s approach can be seen as a general theory
of ‘geometrical forms existing in the world’. Of course Riemann geometry is
not equivalent to general relativity. A lot of detailed physics had to be known
to apply Riemann geometry before it could lead to general relativity. This is
the same with our approach: it has the potential to deliver the framework for
the new theory, in a similar way to the way that Riemann geometry had the
potential to deliver the framework for general relativity.

We note that in principle a theory that describes the possible actions in the
world, and a theory that delivers a model for the whole universe, should not
be incompatible. It should even be that the theory that delivers a model of the
whole universe should incorporate the theory of actions in the world, which
would mean for the situation that exists now, general relativity should contain
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quantum mechanics, if it really delivers a model for the whole universe. That
is why we believe that Einstein’s attitude, trying to incorporate the other
forces and interactions within general relativity, contrary to common belief,
was the right one, globally speaking. What Einstein did not know at that
time was the reality of nonlocality in the micro-world. From our approach it
follows that nonlocality should be interpreted as nonspatiality, which means
that the reality of the micro-world, and hence the reality of the universe as a
whole, is not time–space-like. Time–space is not the global theatre of reality,
but rather a crystallization and structuration of the macro-world. Time–space
has come into existence together with the macroscopic material entities, and
hence it is ‘their’ time and space, but it is not the theatre of the microscopic
quantum entities.

This fact is the fundamental reason why general relativity, built on the
mathematical geometrical Riemannian structure of time–space, cannot be
the canvas on which the new theory can be painted. A way to express this
technically would be to say that the set of events cannot be identified with
the set of time–space points, as is done in relativity theory. One must have
recourse to a theory that describes reality as a kind of pre-geometry, and
where the geometrical structure arises as a consequence of interactions that
collapse into the time–space context. We think that the approach that we
develop can deliver the framework as well as the methodology to construct
and elaborate such a theory. This is in our opinion the most fundamental role
that quantum mechanics, or better the generalizations of quantum mechanics
in the spirit of our approach, because we believe that standard quantum
mechanics is mathematically too specific and too constrained to play this
role, will play in the decades to come. In the next section we introduce the
basic objects making up our approach.

11.3 State Property Spaces

Mackey and Piron introduced the set of yes/no experiments but then imme-
diately shifted to an attempt to axiomatize the lattice of (operational) propo-
sitions of a quantum entity mathematically. Mackey immediately postulated
an isomorphism with P(H) and Piron gave five axioms to come as close
as possible to P(H). Furthermore, Piron’s axioms are mostly motivated by
mimicking the structure of P(H) mathematically. In later work Piron made a
more determined attempt to found some of the axioms operationally [7], and
this attempt was worked out further in [8–10], to arrive at a full operational
foundation only recently [11–14].

Mathematically the circle was closed only recently. At the time when
Piron gave his five axioms that lead to the representation within a generalized
Hilbert space, there only existed three examples of generalized Hilbert spaces
that fitted all the axioms, namely real, complex and quaternionic Hilbert
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space, also referred to as the three standard Hilbert spaces.2 Years later, Hans
Keller constructed the first counterexample, more specifically an example of
an infinite-dimensional generalized Hilbert space that is not isomorphic to
one of the three standard Hilbert spaces [15].

The study of generalized Hilbert spaces, nowadays also called orthomod-
ular spaces, developed into a research subject of its own, and recently Maria
Pia Solèr proved a groundbreaking theorem in this field. She proved that
an infinite-dimensional generalized Hilbert space that contains an orthonor-
mal basis is isomorphic with one of the three standard Hilbert spaces [16].
Meanwhile it has also been possible to formulate an operational axiom, called
‘plane transitivity’ on the set of operational propositions that implies Solèr’s
condition [17], which completes the axiomatics for standard quantum me-
chanics by means of six axioms, the original five axioms of Piron and plane
transitivity as the sixth axiom.

Let us now explain the operational axiomatic approach to quantum me-
chanics that we develop in its most recent version. Operational propositions
have meanwhile been called properties. Hence the basic things to consider for
a physical entity S are:

• its set of states Σ, where we denote states by symbols p, q, r, . . . ,
• its set of properties L, where we denote properties by symbols a, b, c, . . . ,
• a relation of ‘actuality’ between the states and properties that expresses

the basic statement: the property a ∈ L is actual if the entity is in state
p ∈ Σ. This we do by introducing a function κ : L → P(Σ) such that κ(a)
is the set of all states of the entity that make property a actual, and κ is
called the Cartan map.3 The basic relation between states and properties,
viz., the property a ∈ L is actual if the entity is in state p ∈ Σ, is then
equivalent to the mathematical expression p ∈ κ(a).

The triple (Σ,L, κ) is called a state property space [12].

Definition 1 (State Property Space). The triple (Σ,L, κ), called a state
property space, consists of two sets Σ and L, where Σ is the set of states of a
physical entity S, and L its set of properties, and a function κ : L → P(Σ),
called the Cartan map, such that for a ∈ L, we have that κ(a) is the set of
states that make a actual.
2 There do exist a lot of finite-dimensional generalized Hilbert spaces that are

different from the three standard examples. But since a physical entity has to
have at least a position observable, it follows that the generalized Hilbert space
must be infinite-dimensional. At the time of Piron’s representation theorem, the
only infinite-dimensional cases that were known were the three standard Hilbert
spaces, over the real, complex or quaternionic numbers.

3 The idea of characterizing properties by the set of states that make them actual
can be found in the work of E. Cartan, and that is why we have called this
function the Cartan map [8].
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The state property space will be the basic mathematical structure that we
start with. It can easily be completely operationally founded in the following
way. For each property a ∈ L, we suppose that there is a yes/no experiment α
that tests this property. This means the following: a state p ∈ Σ is contained
in κ(a) iff the outcome for the yes/no experiment α is yes with certainty. If
p �∈ κ(a), then the outcome for α is uncertain (can be yes or no).

There exist two natural pre-order relations,4 one on L and one on Σ,
defined as follows:

Definition 2 (Pre-Order Relations). Suppose that (Σ,L, κ) is the state
property space describing the physical entity S. For a, b ∈ L and p, q ∈ Σ, we
define:

a < b⇐⇒ κ(a) ⊂ κ(b) , (11.2)

p < q ⇐⇒ ∀a ∈ L : q ∈ κ(a) =⇒ p ∈ κ(a) , (11.3)

and say ‘a implies b’ if a < b, and ‘p implies q’ if p < q.

The physical meaning of these two pre-order relations is obvious, for example
a < b means that, whenever a is actual, then b is also actual.

Let us see how the mathematical structure of a state property space is
present in classical mechanics as well as in quantum mechanics. For a clas-
sical entity described by classical mechanics, the set of states is the state
space Ω, and for a quantum entity described by standard quantum mechan-
ics, the set of states is the set of unit vectors of the complex Hilbert space
H, which we denote by Σ(H). We have already mentioned that a property of
a quantum entity described by standard quantum mechanics is represented
by the closed subspace which is the range of the projection operator that
describes the yes/no experiment testing this property. Hence L equals P(H),
the set of all closed subspaces of H. For a classical entity described by clas-
sical mechanics, each subset of the state space represents a property, which
shows that L equals P(Ω), the set of all subsets of Ω. The Cartan map κ in
the classical case is the identity, and in the quantum case it is the function
that maps a closed subspace onto the set of unit vectors contained in this
closed subspace. To conclude, classical mechanics has a state property space(
Ω,P(Ω), κ

)
, where κ(A) = A, and quantum mechanics has a state property

space
(
Σ(H),P(H), κ

)
, where κ(A) = {u|u ∈ Σ(H), u ∈ A}.

By means of these two examples, we can already see that the shift of atten-
tion introduced by Birkhoff and von Neumann, Mackey, Piron and others to
the set of operational propositions (called properties now), and hence mathe-
matically the shift of attention from H to P(H) for a quantum entity, and the
shift of attention from Ω to P(Ω) for a classical entity, makes it possible to

4 A pre-order relation < is a relation that is reflexive (x < x), and transitive (x < y
and y < z implies x < z).
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consider a classical entity and a quantum entity within the same formalism.
The state space of a classical physical entity is a very different mathematical
structure from the complex Hilbert space of a quantum mechanical physical
entity, but the sets of properties of both entities are just variations on a simi-
lar mathematical structure. This means that this approach has the potential
to eventually understand the difference between classical and quantum, and
we thus have a real possibility of working out a theory that integrates both
descriptions, and where both classical mechanics and quantum mechanics
appear as special cases.

11.4 The Axioms

The state property space (Σ,L, κ) is a purely operational structure, which
means that no axioms are necessary to get it. Any physical entity has it. To
come closer to the two cases, classical mechanics and quantum mechanics, we
have to introduce axioms. Some of them will have a well-defined operational
interpretation and others will be of a purely technical mathematical nature.

11.4.1 Axiom 1: State Property Determination

The first axiom amounts to demanding that:

• the set of states that make a certain property actual determine this prop-
erty,

• the set of properties that are actual in a certain state determine this state.

That is why we call it the axiom of state and property determination. It is
satisfied both in standard quantum mechanics and in classical mechanics. Let
us formulate it:

Axiom 1 (State Property Determination). Suppose we have a physical
entity S described by a state property space (Σ,L, κ). The first axiom of state
and property determination is satisfied iff for p, q ∈ Σ and a, b ∈ L, we have

κ(a) = κ(b)⇒ a = b , (11.4)

{a|a ∈ L, p ∈ κ(a)} = {a|a ∈ L, q ∈ κ(a)} =⇒ p = q . (11.5)

It is easy to check that if Axiom 1 is satisfied, the two pre-order relations of
Definition 2 become partial order relations.5 From a mathematical point of
view, an obvious question concerning a partially ordered set is whether there
exist infima and suprema for this partial order relation. From a physical
5 A partial order relation < is a pre-order relation which, apart from being reflexive

and transitive, is also symmetric (x < y and y < x implies x = y).
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operational point of view, for two properties a, b ∈ L, the infimum, which we
denote a∧b if it exists, would normally play the role of the conjunction of the
two properties a and b, hence the property a ‘and’ b. The supremum, which
we denote a ∨ b if it exists, would normally play the role of the disjunction
of the two properties a and b, hence the property a ‘or’ b. For states, the
meaning of the infimum and supremum is less straightforward, but we will
see later that we do not have to bother about this, because another axiom
is satisfied, more specifically Axiom 2, that makes the question irrelevant. So
let us concentrate on the structure of L, the set of properties of the physical
entity S, which is now a partially ordered set, since we suppose Axiom 1 to
be satisfied, with partial order relation < as introduced in Definition 2.

We arrive here at the first aspect of quantum mechanics, related to the
existence of the superposition principle, that can be understood and explained
by means of our approach.

11.4.2 Conjunctions and Disjunctions

It turns out that, if we take into account that the general physical operational
situation for two measurements is the situation where they cannot necessarily
be carried out at once (or together), which in quantum jargon means that
they are incompatible, we can show that in this case, the conjunction for
these properties, of which one is measured by one of the measurements and
the other by the other measurement, still exists as an operational property,
but the disjunction does not necessarily exist as an operational property. This
is a subtle matter and one that is not easy to explain in a few words, but we
will make an attempt.

Suppose that we have two yes/no experiments α and β testing properties
a and b. If we think of the standard way to define conjunction and disjunction
in logic, by means of truth tables, it is obvious that both conjunction and
disjunction can only be defined operationally if both yes/no experiments
can be performed together, because that is the only way to form the truth
tables operationally. For the conjunction, the outcome (yes, yes) for the joint
measurement of α and β is replaced by ‘yes’, and the outcomes (yes, no),
(no, yes) and (no, no) are replaced by ‘no’, while for the disjunction the
outcomes (yes, yes), (yes, no) and (no, yes) are replaced by ‘yes’, while the
outcome (no, no) is replaced by ‘no’. However, this procedure cannot be
applied when the two yes/no measurements α and β cannot be performed
together.

The subtlety of the matter is that for the conjunction there is another pro-
cedure available which can always be applied, while for the disjunction this
is not the case. To make this clear, consider for the two yes/no experiments
α and β the yes/no experiment α · β, which we call the product experiment,
which consists in choosing (at random or otherwise) one of the yes/no experi-
ments, α or β, performing the chosen experiment and giving the outcome, yes
or no, that occurs in this way, to the product yes/no experiment α ·β. When
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will α · β give the outcome yes with certainty? Obviously, if and only if both
α and β give the outcome yes with certainty. This means that α · β tests the
property a ‘and’ b. Since α · β always exists, even if α cannot be performed
together with β, because we only have to choose α or β to perform it, this
proves that for two operational properties a and b, the property a ‘and’ b
always exists as an operational property.

In [8], we gave an example where this is particularly evident. Consider a
piece of wood and two properties a and b of the piece of wood, where a is the
property ‘the piece of wood burns well’ and b is the property ‘the piece of wood
floats on water’. The yes/no experiment α, testing a, consists in putting the
piece of wood on fire following a well-defined procedure, and seeing whether
it burns. If so, the outcome ‘yes’ occurs. The yes/no experiment β, testing b,
consists in putting the piece of wood on water and seeing whether it floats. If
so, the outcome ‘yes’ occurs. Obviously it is rather difficult to perform both
yes/no experiments together, and if one did try to do so, no reliable outcome
would occur. But we all agree that there exist a lot of pieces of wood for
which both properties a and b are actual at once. The reason that we are
all convinced of this fact is that we unconsciously use the yes/no experiment
α · β to test the conjunction property a ‘and’ b. Indeed, we decide that, for a
specific piece of wood in a specific state, both properties are actual, because
if we chose to perform one of the two yes/no experiments α or β, the outcome
‘yes’ would occur with certainty. This is exactly the same as performing α ·β,
the product yes/no experiment.

Hence, the reason why there is an asymmetry for the existence of an op-
erational conjunction and disjunction, the conjunction always existing, while
the disjunction only exists when the corresponding experiments can be per-
formed together, is because, to perform the product experiment α · β of two
experiments α and β, we only need to be able to perform α or β, which is
indeed always possible. We note that the product yes/no experiment exists
for any number of yes/no experiments {αi}i, and operationally defines the
conjunction of all the corresponding properties {ai}i. It can be proven that
the conjunction is an infimum for the partial order relation < existing on L,
and that is why we denote it by ∧iai. It is a mathematical theorem that a
partially ordered set L, < such that for any family of elements {ai}i there
exists an infimum, is a complete lattice6 if there exists a maximal element of
L. And this maximal element exists, e.g., the property ‘the physical entity
under consideration exists’, which we denote by I, is such a maximal element
of L, <. The supremum for a family of elements {ai}i, denoted ∨iai, is then
defined mathematically by the formula∨

i

ai =
∧

x∈L,ai<x ∀i

x . (11.6)

6 A complete lattice is a partially ordered set such that, for any family of elements,
there exists an infimum and a supremum for this partial order.
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As a conclusion we can say that, if Axiom 1 is satisfied, the set of properties
L of the state property space (Σ,L, κ) describing the physical entity S is
a complete lattice. Let us note that, as a consequence, L also contains a
minimal element, which we denote by 0.

We promised that we would be able to explain something related to the
superposition principle in quantum mechanics by what we have been analyz-
ing in the foregoing. To do this, let us return to the state property spaces(
Ω,P(Ω), κ

)
of classical mechanics and

(
Σ(H),P(H), κ

)
of quantum me-

chanics. In P(Ω) the infimum and supremum of two subsets A, B ∈ P(Ω)
are given respectively by the intersection A ∩ B ∈ P(Ω) and the union
A ∪ B ∈ P(Ω) of subsets. For the case of P(H), the infimum of two closed
subspaces A, B ∈ P(H) is given by the intersection A ∩ B ∈ P(H), because
the intersection of two closed subspaces is indeed another closed subspace.
On the other hand, the union of two closed subspaces is not in general a
closed subspace. This means that the union does not give us the supremum
in this case. For two closed subspaces A, B ∈ P(H), the smallest closed sub-
space that contains both is A + B, the topological closure of the sum of the
two subspaces. Hence this is the supremum of A and B in P(H). The vec-
tors contained in the topological closure A + B of the sum of A and B are
exactly the vectors that are superpositions of vectors in A and vectors in B.
Hence, for a quantum entity, described by

(
Σ(H),P(H), κ

)
, there are addi-

tional vectors in the supremum of A and B, contained neither in A nor in
B, while for the classical entity, described by

(
Ω,P(Ω), κ

)
, there are no such

additional elements, because the supremum of A and B is the union A ∪ B.
This is due to the fact that quantum mechanics experiments that cannot be
performed together are an essential ingredient of the theory, while for classi-
cal mechanics, although such experiments exist, think of the example of the
piece of wood, they can always be substituted by other experiments that can
be performed together. For the piece of wood we can, for example, break the
sample in two pieces, putting one in water and the other in fire.

The role of the superposition principle is still a little more subtle than we
have explained here, because even for compatible properties, for example, two
closed subspaces A and B with respective projection operators that commute,
there exist states that are contained neither in A, nor in B, superposition
states of states in A and B, that are contained in the closure of the sum
A + B. This is due to the possibility of EPR-like correlations in quantum
mechanics. We have analyzed this effect in detail in [18], but can explain the
crux of it in a few lines. If, for example, in performing the yes/no experiments
α and β, testing properties a and b, there is an EPR-type correlation, such
that (yes, no) or (no, yes) always comes out for the experiment that performs
both α and β together, then a ‘or’ b is actual as a property, following the
rules of the truth tables, but neither a nor b is actual, because both (yes,
no) or (no, yes) are possible outcomes. This shows that, in the presence of
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EPR-like correlations, the ‘or’ defined by the truth table is not the ‘or’ of
classical logic.

11.4.3 Axiom 2: Atomisticity

An element of a (complete) lattice is called an atom if it is a smallest element
different from the minimal element 0. Let us define precisely what we mean.

Definition 3 (Atom of a Complete Lattice). We say that s ∈ L is an
atom of L if, for x ∈ L, we have:

0 < x < s =⇒ x = 0 or x = s . (11.7)

The atoms of
(
P(Ω),⊂,∩,∪

)
are the singletons of the phase space Ω, and

the atoms of
(
P(H),⊂,∩

)
are the one-dimensional subspaces (rays) of the

Hilbert space H.
The second axiom consists in demanding that the states can be considered

as atoms of the property lattice.

Axiom 2 (Atomisticity). Suppose that we have a physical entity S de-
scribed by a state property space (Σ,L, κ). For p ∈ Σ, we have that∧

p∈κ(a)

a (11.8)

is an atom of L.
This axiom is obviously satisfied in classical mechanics as well as in quantum
mechanics.

11.4.4 Axiom 3: Orthocomplementation

The third axiom introduces an orthocomplementation structure into the lat-
tice of properties. At first sight this orthocomplementation could be seen as
a structure that plays a similar role for properties to the one that negation
plays for propositions in logic. But that is not a very careful way of looking at
things. We cannot go into the details of the attempts that have been made to
interpret the orthocomplementation in a physical way, and refer to [7–10,19]
for those that are interested in this problem. The problem is also considered
in depth in [20–22].

Axiom 3 (Orthocomplementation). Suppose that we have a physical en-
tity S described by a state property space (Σ,L, κ). The lattice L of properties
of the physical entity is orthocomplemented. This means that there exists a
function ′ : L → L such that for a, b ∈ L we have:

(a′)′ = a , (11.9)
a < b =⇒ b′ < a′ , (11.10)

a ∧ a′ = 0 and a ∨ a′ = I . (11.11)



11 Towards a General Operational and Realistic Framework 167

For P(Ω) the orthocomplement of a subset is given by the complement of
this subset, and for P(H) the orthocomplement of a closed subspace is given
by the subspace orthogonal to this closed subspace.

11.4.5 Axioms 4 and 5: Covering Law and Weak Modularity

The next two axioms are called the covering law and weak modularity. There
is no obvious physical interpretation for them. They have been put forward
mainly because they are satisfied in the lattice of closed subspaces of a com-
plex Hilbert space.

Axiom 4 (Covering Law). Suppose that we have a physical entity S de-
scribed by a state property space (Σ,L, κ). The lattice L of properties of the
physical entity satisfies the covering law. This means that for a, x ∈ L and
p ∈ Σ, we have

a < x < a ∨ p =⇒ x = a or x = a ∨ p . (11.12)

Axiom 5 (Weak Modularity). Suppose that we have a physical entity S
described by a state property space (Σ,L, κ). The orthocomplemented lattice
L of properties of the physical entity is weakly modular. This means that for
a, b ∈ L, we have

a < b =⇒ (b ∧ a′) ∨ a = b . (11.13)

It can be shown that both axioms, the covering law and weak modularity,
are satisfied for the two examples P(Ω) and P(H) [6, 7].

11.4.6 Axiom 6: Plane Transitivity

The first five axioms are modelled on Piron’s original representation theorem
[6]. The sixth axiom that brings us directly to the structure of one of the
three standard Hilbert spaces is much more recent [17].

Axiom 6 (Plane Transitivity). Suppose that we have a physical entity S
described by a state property space (Σ,L, κ). The orthocomplemented lattice
L of properties of the physical entity is plane transitive. This means that for
all atoms s, t ∈ L, there exist two distinct atoms s1, s2 and a symmetry f
such that f |[0,s1∨s2] is the identity and f(s) = t.

Both classical entities and quantum entities can be described by a state prop-
erty space where the set of properties is a complete atomistic orthocomple-
mented lattice that satisfies the covering law, and is weakly modular and
plane transitive. Now we have to consider the converse, i.e., how this struc-
ture leads us to classical physics and to quantum physics.
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11.5 The Representation Theorem

This section is more technical than the above, because we want to show in
some detail how the standard quantum mechanical structure emerges from
the simple operational structure of a state property space that satisfies the
six axioms. Above all, we want to make it clear how the classical and pure
quantum parts of the general structure appear. Therefore, we first show how
the classical and nonclassical parts can be extracted from the general struc-
ture, and then we show how the nonclassical parts can be represented by
generalized Hilbert spaces, if they are finite-dimensional, and by one of the
three standard Hilbert spaces if they are infinite-dimensional. Since both ex-
amples P(Ω) and P(H) satisfy the six axioms, it is clear that a theory where
the six axioms are satisfied can give rise to a classical theory, as well as to a
quantum theory, but in general gives rise to a mixture of both, in the sense
of a quantum theory with superselection rules.

11.5.1 The Classical Part

It is possible to filter out the classical part by introducing the notions of
classical property and classical state. We introduce a classical property a ∈ L
as a property for which, for each state p ∈ Σ of the physical entity, this
property a is actual or its orthocomplement property a′ is actual. The idea
is that a property a ∈ L is classical if no indeterminism exists for any test α
testing this property. This in turn means that, for each state p ∈ Σ, α gives
the outcome ‘yes’ with certainty or α gives the outcome ‘no’ with certainty
when tested.

Definition 4 (Classical Property). Suppose that (Σ,L, κ) is the state
property space representing a physical entity S, satisfying Axioms 1, 2 and
3. We say that a property a ∈ L is a classical property if, for all p ∈ Σ, we
have

p ∈ κ(a) or p ∈ κ(a′) . (11.14)

The set of all classical properties is denoted by C.

Again considering our two examples, it is easy to see that for the quantum
case, hence for L = P(H), we have no nontrivial classical properties. Indeed,
for any closed subspace A ∈ H, different from 0 andH, we have rays ofH that
are neither contained in A nor contained in A′. These are exactly the rays
that correspond to a superposition of states in A and states in A′. It is due
to the superposition principle in standard quantum mechanics that the only
classical properties of a quantum entity are the trivial ones, represented by 0
and H. It is also easy to see that, for the case of a classical entity described
by P(Ω), all properties are classical properties. Indeed, consider an arbitrary
property A ∈ P(Ω). Then for any singleton {p} ∈ Σ representing a state
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of the classical entity, we have {p} ⊂ A or {p} ⊂ A′, since A′ is the set-
theoretical complement of A.

Next we introduce the idea of a classical state in the following way. For
each state p ∈ Σ of the entity, we consider the set of all classical properties
that are actual when the entity is in this state. The infimum of this set of
classical properties is a property that is also actual, and that is the greatest
property that makes all these classical properties actual when actual itself.
Hence it perfectly plays the role of a classical state corresponding to p, namely,
a state in which only the classical properties (classical part) of the entity is
considered. In an obvious way, we introduce the classical Cartan map as the
map that sends each classical property to the set of classical states that make
this property actual.

Definition 5 (Classical State). Suppose that (Σ,L, κ) is the state property
space of a physical entity S satisfying Axioms 1, 2 and 3. For p ∈ Σ, we
introduce

ω(p) =
∧

p∈κ(a),a∈C
a , (11.15)

κc(a) = {ω(p)| p ∈ κ(a)} , (11.16)

and call ω(p) the classical state of the physical entity whenever it is in a state
p ∈ Σ, and κc the classical Cartan map. The set of all classical states will be
denoted by Ω.

We have now introduced all that is needed to define the classical state prop-
erty space of the entity under consideration.

Definition 6 (Classical State Property Space). Suppose that (Σ,L, κ)
is the state property space of a physical entity satisfying Axioms 1, 2 and 3.
The classical state property space corresponding to (Σ,L, κ) is (Ω, C, κc).

Let us look at our two examples. For the quantum case, with L = P(H), we
have only two classical properties, namely 0 and H. This means that there is
only one classical state, namely H. It is the classical state that corresponds
to considering the quantum entity under study and the state does not specify
anything more than that. For the classical case, every state is a classical state.

It can be proven that κc : C → P(Ω) is an isomorphism [8,10]. This means
that if we filter out the classical part and limit the description of our general
physical entity to its classical properties and classical states, the description
becomes a standard classical physical description.

11.5.2 The Nonclassical Parts

Now that we have identified the classical parts, let us filter out the nonclassical
part. The idea is that we now consider the physical entity to be in a specific
classical state ω, and then penetrate further into the leftover nonclassical
aspects of this entity.
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Definition 7 (Nonclassical Part). Suppose that (Σ,L, κ) is the state prop-
erty space of a physical entity satisfying Axioms 1, 2 and 3. For ω ∈ Ω, we
introduce

Lω = {a|a < ω, a ∈ L} , (11.17)

Σω = {p|p ∈ κ(ω), p ∈ Σ} , (11.18)

κω(a) = κ(a) for a ∈ Lω , (11.19)

and we call (Σω,Lω, κω) the nonclassical components of (Σ,L, κ).

For the quantum case L = P(H), we have only one classical state H, and
obviously LH = L. Similarly we have ΣH = Σ. This means that the only
nonclassical component is (Σ,L, κ) itself. For the classical case, since all
properties are classical properties and all states are classical states, we have
Lω = {0, ω}, which is the trivial lattice, containing only its minimal and max-
imal element, and Σω = {ω}. This means that the nonclassical components
are all trivial.

For the general situation of a physical entity described by (Σ,L, κ), it can
be shown that Lω contains no classical properties with respect to Σω except 0
and ω, the minimal and maximal elements of Lω, and that if (Σ,L, κ) satisfies
Axioms 1–6 then (Σω,Lω, κω) ∀ω ∈ Ω also satisfy Axioms 1–6 (see [8,10,17]).

We note that, if Axioms 1, 2 and 3 are satisfied, we can identify a state
p ∈ Σ with the element of the lattice of properties L given by

s(p) =
∧

p∈κ(a),a∈L
a , (11.20)

which is an atom of L. More precisely, it is not difficult to verify that, under
the assumption of Axioms 1 and 2, s : Σ → ΣL is a well-defined mapping that
is one-to-one and onto, ΣL being the collection of all atoms in L. Moreover,
p ∈ κ(a) iff s(p) < a. We can call s(p) the property state corresponding to p
and define

Σ′ = {s(p)| p ∈ Σ} (11.21)

as the set of state properties. It is easy to verify that, if we introduce

κ′ : L −→ P(Σ′) , (11.22)

where

κ′(a) = {s(p)| p ∈ κ(a)} , (11.23)

then
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(Σ′,L, κ′) ∼= (Σ,L, κ) , (11.24)

when Axioms 1, 2 and 3 are satisfied.
To see in more detail how the classical and nonclassical parts are struc-

tured within the lattice L, we make use of this isomorphism and introduce
the direct union of a set of complete, atomistic orthocomplemented lattices,
making use of this identification.

Definition 8 (Direct Union). Consider a set {Lω|ω ∈ Ω} of complete,
atomistic orthocomplemented lattices. The direct union ©∨ ω∈ΩLω of these
lattices consists of the sequences a = (aω)ω, such that

(aω)ω < (bω)ω ⇐⇒ aω < bω ∀ω ∈ Ω , (11.25)
(aω)ω ∧ (bω)ω = (aω ∧ bω)ω , (11.26)
(aω)ω ∨ (bω)ω = (aω ∨ bω)ω , (11.27)

(aω)′
ω = (a′

ω)ω . (11.28)

The atoms of ©∨ ω∈ΩLω are of the form (aω)ω, where aω1 = p for some ω1
and p ∈ Σω1 , and aω = 0 for ω �= ω1.

It can be proven that if Lω are complete, atomistic, orthocomplemented lat-
tices, then©∨ ω∈ΩLω is also a complete, atomistic, orthocomplemented lattice
(see [8, 10]). The structure of a direct union of complete, atomistic, ortho-
complemented lattices makes it possible to define the direct union of state
property spaces when Axioms 1, 2 and 3 are satisfied.

Definition 9 (Direct Union of State Property Spaces). Let (Σω,Lω,κω)
be a set of state property spaces, where Lω are complete, atomistic, orthocom-
plemented lattices and for each ω we have that Σω is the set of atoms of Lω.
The direct union ©∨ ω(Σω,Lω, κω) of these state property spaces is the state
property space (∪ωΣω,©∨ ωLω,©∨ ωκω), where ∪ωΣω is the disjoint union of
the sets Σω, ©∨ ωLω is the direct union of the lattices Lω, and

©∨ ωκω

(
(aω)ω

)
= ∪ωκω(aω) . (11.29)

The first part of a fundamental representation theorem can now be stated.
For this part, Axioms 1, 2 and 3 suffice.

Theorem 1 (Representation Theorem: Part 1). We consider a physical
entity S described by its state property space (Σ,L, κ). Suppose that Axioms
1, 2 and 3 are satisfied. Then

(Σ,L, κ) ∼=©∨ ω∈Ω(Σ′
ω,Lω, κ′

ω) , (11.30)

where Ω is the set of classical states of (Σ,L, κ) (see Definition 5), Σ′
ω is

the set of state properties, κ′
ω the corresponding Cartan map [see (11.21) and

(11.23)], and Lω the lattice of properties (see Definition 7) of the nonclassical
component (Σω,Lω, κω). If Axioms 4, 5 and 6 are satisfied for (Σ,L, κ), then
they are also satisfied for (Σ′

ω,Lω, κ′
ω), for all ω ∈ Ω.
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Proof. See [8, 10,17].

From the previous section, it follows that, if Axioms 1–6 are satisfied, we can
write the state property space (Σ,L, κ) of the physical entity under study
as the direct union ©∨ ω∈Ω(Σ′

ω,Lω, κ′
ω) over the classical state space Ω of

its nonclassical components (Σ′
ω,Lω, κ′

ω), and that each of these nonclassical
components also satisfies Axioms 1–6. Additionally, for each of the nonclas-
sical components (Σ′

ω,Lω, κ′
ω), no classical properties except 0 and ω exist.

It is for the nonclassical components that a further representation theorem
can be proven such that a vector space structure emerges for each of the
nonclassical components. To do this, we rely on the original representation
theorem proved by Piron in [6] and on the more recent results proved in [17].

Theorem 2 (Representation Theorem: Part 2). Consider the same sit-
uation as in Theorem 1, but with Axioms 4, 5 and 6 satisfied as well. For
each nonclassical component (Σ′

ω,Lω, κ′
ω), of which the lattice Lω has at least

four orthogonal states,7 there exists a vector space Vω over a division ring Kω,
with an involution of Kω, which means a function

∗ : Kω −→ Kω , (11.31)

such that, for k, l ∈ Kω, we have

(k∗)∗ = k , (11.32)

(k · l)∗ = l∗ · k∗ , (11.33)

and a Hermitian product on Vω, which means a function

〈 , 〉 : Vω × Vω −→ Kω , (11.34)

such that, for x, y, z ∈ Vω and k ∈ Kω, we have

〈x + ky, z〉 = 〈x, z〉+ k〈x, y〉 , (11.35)

〈x, y〉∗ = 〈y, x〉 , (11.36)

〈x, x〉 = 0⇐⇒ x = 0 , (11.37)

and such that, for M ⊂ Vω, we have

M⊥ + (M⊥)⊥ = Vω , (11.38)

7 Two states p, q ∈ Σω are orthogonal if there exists a ∈ Lω such that p < a and
q < a′.
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where M⊥ = {y|y ∈ Vω, 〈y, x〉 = 0,∀x ∈ M}. Such a vector space is called a
generalized Hilbert space or an orthomodular vector space. Furthermore,

(Σ′
ω,Lω, κ′

ω) ∼=
(
R(V ),L(V ), ν

)
, (11.39)

where R(V ) is the set of rays of V , L(V ) is the set of biorthogonally closed
subspaces of V (subspaces that are equal to their biorthogonal), and ν maps
each such biorthogonal subspace to the set of rays that are contained in it.
Moreover, if a classical component is infinite-dimensional, which means that
it contains an infinite sequence of orthogonal atoms, the generalized Hilbert
space is isomorphic to a real, complex or quaternionic Hilbert space.

Proof. See [6, 7, 17].

11.6 Failing Axioms: Separated Entities

In the last section, we explained in detail the representation theorem that
makes it possible to move, by means of 6 axioms, from the completely oper-
ational structure of a state property space to standard quantum mechanics
with superselection rules. Since we have only presented the results here and
not the proofs, we should mention that three long, hard mathematical proofs
underpin this result. First there is the Piron representation theorem, which
brings us by means of 5 axioms to a generalized Hilbert space (with superse-
lection rules) [6,7]. This representation theorem makes use of the fundamental
theorem of projective geometry [23], one of the long and hard standard math-
ematical proofs. Second there is Solèr’s theorem which uses Axiom 6 to bring
us to one of the standard Hilbert spaces for the infinite-dimensional nonclas-
sical components [16]. This is also a long, hard mathematical theorem, and
not yet standard, because it is very recent, but certainly the important steps
of it will become standard. Last but not least, we have not yet mentioned
quantum probability. But since we have now arrived at the standard Hilbert
spaces, we can use Gleason’s theorem to derive the standard quantum me-
chanical transition probability in a unique way. This means that to get from
our state property space with the six axioms to standard quantum mechanics
with superselection rules, long, hard mathematical proofs are needed. It is
a quite powerful situation to have been able to concentrate all this wealth
of mathematical structure inside the transparent operational structure of a
state property space and 6 axioms.

One of the aspects of this power is that we can investigate the status of
these axioms. More specifically we can look at situations that have caused
deep problems to be described by standard quantum mechanics and investi-
gate which of the axioms are at the origin of these problems. This is exactly
what we have done in the past decades and we have been able to prove that
Axioms 4 and 5 are at the origin of two essential shortcomings of standard
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quantum mechanics: its incapacity to describe separated quantum entities
and its incapacity to describe a continuous transition from quantum to clas-
sical. Within the approach to state property spaces in which Axioms 4 and 5
are relaxed, the description of separated quantum entities is possible and it
is also possible to describe a continuous transition from quantum to classical.
We will now explain in somewhat more detail what really happens for the
description of separated physical entities. We analyze how Axioms 4 and 5
make it impossible to describe a continuous transition from quantum to clas-
sical in the next section, because for this analysis we need the explanation of
quantum probabilities.

11.6.1 The Impossibility of Describing Separated Entities

Let us first explain what is meant by separated physical entities. We consider
a physical entity S that consists of two physical entities S1 and S2. The defi-
nition of ‘separated’ used in [8,9] is as follows. Suppose that we consider two
experiments e1 and e2 that can be performed on the entity S1 and on the en-
tity S2, respectively, such that the joint experiments e1×e2 can be performed
on the joint entity S consisting of S1 and S2. We say that experiments e1
and e2 are separated experiments whenever, for an arbitrary state p of S, we
have that (x1, x2) is a possible outcome for experiment e1 × e2 if and only if
x1 is a possible outcome for e1 and x2 is a possible outcome for e2. We say
that S1 and S2 are separated entities if and only if all the experiments e1 on
S1 are separated from the experiments e2 on S2.

Let us note that S1 and S2 being separated does not mean that there is
no interaction between S1 and S2. Most entities in the macroscopic world
are separated entities. Let us consider some examples to make this clear. The
earth and the moon, for example, are separated entities. Indeed, consider
any experiment e1 that can be performed on the physical entity earth (e.g.,
measuring its position) and any experiment e2 that can be performed on the
physical entity moon (for example measuring its velocity). The joint experi-
ment e1 × e2 consists in performing e1 and e2 together on the joint entity of
earth and moon (measuring the position of the earth and the velocity of the
moon at once). Obviously the requirement of separation is satisfied. The pair
(x1, x2) (position of the earth and velocity of the moon) is a possible outcome
for e1 × e2 if and only if x1 (position of the earth) is a possible outcome of
e1 and x2 (velocity of the moon) is a possible outcome of e2. This is what we
mean when we say that the earth has position x1 and the moon velocity x2
at once. Clearly this is independent of whether there is an interaction, the
gravitational interaction in this case, between the earth and the moon.

It is not easy to find an example of two physical entities that are not sep-
arated in the macroscopic world, because nonseparated entities are usually
described as one entity and not as two. Elsewhere we have given examples of
nonseparated macroscopic entities [24–26]. The example of communicating
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vessels of water is a good example to give an intuitive idea of what nonsep-
aration means. Consider two vessels V1 and V2, each containing 10 liters of
water. The vessels communicate by a tube, which means that they form a
communicating set of vessels. The tube also contains some water, but this
does not play any role in what we want to show. Experiment e1 consists in
taking water out of vessel V1 by a siphon, and measuring the amount of water
that comes out. We give the outcome x1 if the amount of water coming out
is greater than 10 liters. Experiment e2 consists in doing exactly the same
with vessel V2. We give outcome x2 to e2 if the amount of water coming out
is greater than 10 liters. The joint experiment e1 × e2 consists in perform-
ing e1 and e2 together on the joint entity of the two communicating vessels
of water. Because of the connection, and the physical principles that govern
communicating vessels, for e1 and for e2 performed alone we find 20 liters of
water coming out. This means that x1 is a possible (even certain) outcome
for e1 and x2 is a possible (also certain) outcome for e2. If we perform the
joint experiment e1× e2, the following happens. If more than 10 liters comes
out of vessel V1, less than 10 liters will come out of vessel V2 and if more than
10 liters comes out of vessel V2, less than 10 liters will come out of vessel V1.
This means that (x1, x2) is not a possible outcome for the joint experiment
e1× e2. Hence e1 and e2 are nonseparated experiments and as a consequence
V1 and V2 are nonseparated entities.

The nonseparated entities that we find in the macroscopic world are enti-
ties that are very similar to the communicating vessels of water. There must
be an ontological connection between the two entities, and that is also the
reason why the joint entity will usually be treated as a single entity. A con-
nection through dynamic interaction, as is the case between the earth and
the moon, interacting by gravitation, leaves the entities separated.

For quantum entities, it can be shown that only when the joint entity of
two quantum entities contains entangled states are the entities nonseparated
quantum entities. It can be proven [24–26] that experiments are separated if
and only if they do not violate Bell’s inequalities. All this has been explored
and investigated in many ways, and several papers have been published on the
matter [24–28]. Interesting consequences for the Einstein–Podolsky–Rosen
paradox and the violation of Bell’s inequalities have been investigated [29,30].

11.6.2 The Separated Quantum Entities Theorem

We are now ready to state the theorem about the impossibility for standard
quantum mechanics to describe separated quantum entities [8,9]. The demand
of separation explained in the last section can easily be transferred to the
state property spaces just by demanding that the yes/no experiments that
test properties of one of the entities be separated from yes/no experiments
testing properties of the other entity.

Theorem 3 (Separated Quantum Entities Theorem). Suppose that S
is a physical entity consisting of two separated physical entities S1 and S2.
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Let us suppose that Axioms 1, 2 and 3 are satisfied and call (Σ,L, κ) the
state property space describing S, and (Σ1,L1, κ1) and (Σ2,L2, κ2) the state
property spaces describing S1 and S2.

• If Axiom 4 is satisfied, namely the covering law, then one of the two
entities S1 or S2 is a classical entity, in the sense that one of the two
state property spaces (Σ1,L1, κ1) or (Σ2,L2, κ2) contains only classical
states and classical properties.

• If Axiom 5 is satisfied, namely weak modularity, then one of the two en-
tities S1 or S2 is a classical entity, in the sense that one of the two state
property spaces (Σ1,L1, κ1) or (Σ2,L2, κ2) contains only classical states
and classical properties.

Proof. See [8, 9].

The theorem proves that two separated quantum entities cannot be described
by standard quantum mechanics. A classical entity that is separated from a
quantum entity and two separated classical entities do not cause any problem,
but two separated quantum entities need a structure in which neither the
covering law nor weak modularity is satisfied.

One possible way out is that there might not exist separated quantum
entities in nature. This would mean that all quantum entities are entangled
in some way or other. If this is true, perhaps the standard formalism could
be saved. Let us note, however, that even standard quantum mechanics pre-
supposes the existence of separated quantum entities. Indeed, if we describe
one quantum entity by means of the standard formalism, we take one Hilbert
space to represent the states of this entity. In this sense we suppose the rest of
the universe to be separated from this one quantum entity. If not, we would
have to modify the description and consider two Hilbert spaces, one for the
entity and one for the rest of the universe, and the states would be entangled
states of the states of the entity and the states of the rest of the universe.
But this would mean that the one quantum entity that we considered could
never be in a well-defined state. It would mean that the only possibility that
remains is to describe the whole universe at once by using one huge Hilbert
space.

It goes without saying that such an approach will lead to many other
problems. For example, if this one Hilbert space has to describe the whole
universe, will it also contain itself, as a description, because as a description,
a human activity, it is part of the whole universe. Another more down to
earth problem is that, in this one Hilbert space of the whole universe, all
classical macroscopic entities also have to be described. But classical entities
are not described by a Hilbert space, as we have seen in Sect. 11.5. If the
hypothesis that we can only describe the whole universe at once is correct,
one would expect the theory that does deliver such a description to be the
direct union structure of different Hilbert spaces. But if this is the case, we
are already using a more general theory than standard quantum mechanics.
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So we may as well use the still slightly more general theory, where Axioms
4 and 5 are not satisfied, and make the description of separated quantum
entities possible.

All this convinces us that the inability of standard quantum mechanics
to describe separated quantum entities is really a shortcoming of the mathe-
matical formalism used by standard quantum mechanics, and more notably
of the vector space structure of the Hilbert space used in standard quantum
mechanics.

11.7 An Explanation for Quantum Probability

The axiomatics that we have outlined in the foregoing sections still lacks
a description of a very fundamental notion: probability. We may choose to
derive the probabilistic features of quantum mechanics by means of Gleason’s
theorem, but this is really a great detour. It is our view that probability should
be introduced on a much more profound level, because it is an operationally
well-defined aspect of repeated measurements. The reason that the axiomatics
were built in this way, neglecting probability, is largely historical. As such,
we felt an investigation into the probabilistic aspects of our approach was
called for. What we have been able to show for quantum probability can best
be illustrated by a very simple macroscopic example which, as we shall see,
also constitutes a model for the spin of a spin 1/2 quantum entity.

11.7.1 The Sphere Model

The example that we want to introduce consists of a physical entity consti-
tuted by a point particle P that can move on the surface of a sphere, denoted
S, with center O and radius 1. The unit vector v giving the location of the
particle on S represents the state pv of the particle (see Fig. 11.1a). Hence,
the collection of all possible states of the sphere model, as we shall call our
model, is given by Σ = {pv| v ∈ S}. We introduce the following yes/no exper-
iments. For each point u ∈ S, we introduce the experiment αu. We consider
the diametrically opposite point −u and install an elastic band of length 2,
such that it is fixed with one of its endpoints at u and the other endpoint at
−u. Once the elastic is in place, the particle P falls from its original place v
orthogonally onto the elastic and sticks to it (Fig. 11.1b). The elastic then
breaks and the particle P , attached to one of the two pieces of the elastic
(Fig. 11.1c), moves to one of the two endpoints u or −u (Fig. 11.1d). Depend-
ing on whether the particle P arrives at u (as in Fig. 11.1) or at −u, we give
the outcome ‘yes’ or ‘no’ to αu. The state pv is changed by the experiment
αu into one of the two states pu or p−u.

We make the hypothesis that the elastic band breaks uniformly, which
means that the probability that a particle in state pv arrives at u is given
by the length of L1 (which is 1 + cos θ) divided by the total length of the
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elastic (which is 2). The probability that a particle in state pv arrives at −u
is given by the length of L2 (which is 1 − cos θ) divided by the total length
of the elastic. If we denote these probabilities by P (αu, pv) and P (α−u, pv),
respectively, we have

P (αu, pv) =
1 + cos θ

2
= cos2

θ

2
, (11.40)

P (α−u, pv) =
1− cos θ

2
= sin2 θ

2
. (11.41)
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Fig. 11.1. Sphere model. (a) The physical entity P is in state pv at the point v,
and the elastic corresponding to the experiment αu is installed between the two
diametrically opposed points u and −u. (b) The particle P falls orthogonally onto
the elastic and sticks to it. (c) The elastic breaks and the particle P is pulled
towards the point u, so that (d) it arrives at the point u, and the experiment αu

gets the outcome ‘yes’

Figure 11.2 shows the experimental process connected to αu in the plane
where it takes place, and we can easily calculate the probabilities correspond-
ing to the two possible outcomes. In order to do so, we note that the particle
P arrives at u when the elastic breaks at a point of the interval L1, and
arrives at −u when it breaks at a point of the interval L2 (see Fig. 11.2).

We can easily show that the sphere model is an entity for which the
description is isomorphic to the quantum description of the spin of a spin
1/2 particle, and as such delivers a model for this. This means that we can
describe this macroscopic entity using the ordinary quantum formalism with
a two-dimensional complex Hilbert space as the carrier for the set of states
of the entity.
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Fig. 11.2. A representation of the experimental process in the plane where it takes
place. The elastic of length 2, corresponding to the experiment αu, is installed
between u and −u. The probability P (αu, pv) that the particle P ends up at point
u is given by the length of the piece of elastic L1 divided by the total length of
the elastic. The probability P (α−u, pv), that the particle P ends up at point −u
is given by the length of the piece of elastic L2 divided by the total length of the
elastic

We note that the sphere model is an elaboration of the well known Bloch or
Poincaré model for the spin of a spin 1/2 particle, including also a modeling
of the spin measurements. The sphere model as a model for an arbitrary
quantum system described by a two-dimensional Hilbert space was presented
in [31–33]. It is possible to prove that, for an arbitrary quantum entity, one
can construct a model like that of the sphere model [34–37]. The explanation
of the quantum structure that is given in the sphere model can thus also be
used for general quantum entities. We have called this explanation the ‘hidden
measurement approach’, hidden measurements referring to the fact that, for
a real measurement, there is a lack of knowledge about the measurement
process in this approach. For the sphere model, for example, this lack of
knowledge is the lack of knowledge about where the elastic will break during
a measurement process.

11.7.2 What are Quantum Structures
and Why Do They Appear in Nature?

The explanation for the quantum probabilities that we have put forward
within the hidden measurement approach makes it possible to identify the
reason why quantum structures appear in a natural way in nature.

The original development of probability theory aimed at a formalization
of the description of the probabilities that appear as a consequence of a lack
of knowledge. The probability structure appearing in situations of lack of
knowledge was axiomatized by Kolmogorov and such a probability model
is now called Kolmogorovian. Since the quantum probability model is not
Kolmogorovian, it has now generally been accepted that the quantum proba-
bilities are not associated with a lack of knowledge. Sometimes this conclusion
is formulated by stating that the quantum probabilities are ontological prob-
abilities, as if they were present in reality itself. In the hidden measurement
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approach, we show that the quantum probabilities can also be explained as
being due to a lack of knowledge, and we prove that what distinguishes quan-
tum probabilities from classical Kolmogorovian probabilities is the nature of
this lack of knowledge. Let us go back to the sphere model to illustrate what
we mean.

If we return to our sphere model (Figs. 11.1 and 11.2) and look for the
origin of the probabilities as they appear in this example, we observe that
the probability is entirely due to a lack of knowledge about the measurement
process, namely the lack of knowledge as to where exactly the elastic breaks
during a measurement. More specifically, we can identify two main aspects
of the experiment αu as it appears in the sphere model.

1. The experiment αu effects a real change on the state pv of the point P .
Indeed, the state pv is changed into one of the states pu or p−u by the
experiment αu.

2. The probabilities appearing are due to a lack of knowledge about a deeper
reality of the individual measurement process itself, namely, where the
elastic breaks.

These two effects give rise to quantum-like structures, and the lack of knowl-
edge about the deeper reality of the individual measurement process comes
from ‘hidden measurements’ that operate deterministically in this deeper re-
ality [31–33,39,41,42].

One might think that our ‘hidden-measurement’ approach is in fact a
‘hidden-variable’ theory. In a certain sense this is true. If our explanation for
the quantum structures is the correct one, quantum mechanics is compati-
ble with a deterministic universe at the deepest level. There is no need to
introduce the idea of an ontological probability. Why then the generally held
conviction that hidden variable theories cannot be used for quantum mechan-
ics? The reason is that those physicists who are interested in trying out hidden
variable theories are not at all interested in the kind of theory that we pro-
pose here. They want the hidden variables to be hidden variables of the state
of the entity under study, so that the probability is associated with a lack
of knowledge about the deeper reality of this entity; as we have mentioned
already this gives rise to a Kolmogorovian probability theory. This kind of
hidden variable relating to states is indeed impossible for quantum mechanics
for structural reasons, with the exception of course of the de Broglie–Bohm
theory: there, in addition to the hidden state variables, a new spooky entity
of ‘quantum potential’ is introduced in order to express the action of the
measurement as a change in the hidden state variables.

If one wants to interpret our hidden measurements as hidden variables,
then they are hidden variables of the measuring apparatus and not of the
entity under study. In this sense they are highly contextual, since each ex-
periment introduces a different set of hidden variables. They differ from the
variables of a classical hidden variable theory, because they do not provide
an ‘additional deeper’ description of the reality of the physical entity. Their
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presence as variables of the experimental apparatus has a well-defined philo-
sophical meaning, and expresses the fact that we, human beings, want to
construct a model of reality independent of our experience of this reality.
The reason is that we look for ‘properties’ or ‘relations between properties’,
and these are defined by our ability to make predictions independent of our
experience. We want to model the structure of the world independently of
our observing and experimenting with this world. Since we do not control
these variables in the experimental apparatus, we do not allow them in our
model of reality, and the probability introduced by them cannot be elimi-
nated from a predictive theoretical model. In the macroscopic world, because
of the availability of many experiments with negligible fluctuations, we find
an ‘almost’ deterministic model. For a detailed study of other aspects of the
hidden measurement approach we refer to [30–47].

11.7.3 A Transition from Quantum to Classical

It is a great mystery how the macroscopic classical world around us has
emerged from the microscopic quantum world. To our knowledge, no satis-
factory model or explanation has been given for this. What is certain is that
somewhere and somehow a transition has to have happened. Taking into ac-
count the sphere model, we can propose a simple model for such a transition:
we introduce a parameter ε that parameterizes the amount of fluctuation
that is present on the interaction between measuring apparatus and physical
entity. We have called the extended sphere model that appears in this way
the ε-model.

More specifically we introduce two real parameters ε ∈ [0, 1], and d ∈
[−1+ε, 1−ε], and consider the experiment αε

u,d that consists in the particle P
falling from its original place v orthogonally onto the line between u and −u,
and arriving at a point coordinated by the real number v · u. The hypothesis
is that the rubber band never breaks outside the interval [d − ε, d + ε]. In
the interval [d− ε, d+ ε] we consider a uniformly distributed random variable
λ, and the experiment proceeds as follows. If λ ∈ [d − ε, v · u), the particle
P moves to the point u and the experiment αε

u,d gives outcome ‘yes’. If
λ ∈ (v · u, d + ε], it moves to the point −u, and the experiment αε

u,d gives
outcome ‘no’. If λ = v · u, it moves with probability 1/2 to the point u,
and the experiment αε

u,d gives outcome ‘yes’, and it moves with probability
1/2 to the point −u, and then the experiment αε

u,d gives outcome ‘no’. This
completes the description of the experiment αε

u,d.
We shall now consider different situations labeled by the parameter ε.

• d + ε ≤ v · u. Then P (αε
u,d, pv) = 1 and P (αε

−u,d, pv) = 0.
• d− ε < v · u < d + ε. Then

P (αε
u,d, pv) =

1
2ε

(v · u− d + ε) , (11.42)
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P (αε
−u,d, pv) =

1
2ε

(d + ε− v · u) . (11.43)

• v · u ≤ d− ε. Then P (αε
u,d, pv) = 0 and P (αε

−u,d, pv) = 1.

We have the following situation: there are regions of eigenstates, one re-
gion centered around the point u, which we denote eig(αε

u,d), and another one
centered around the point −u, which we denote eig(αε

−u,d). These regions of
eigenstates are spherical sectors of S. Let us denote a closed spherical sector
centered around the point u ∈ S with angle θ by sect(u, θ). We note that, in
the classical situation, for ε = 0, eig(αε

u,d) and eig(αε
−u,d) are given by open

spherical sectors centered around u and −u. We denote an open spherical sec-
tor centered around u and with angle θ by secto(u, θ). We call λε

d the angle of
the spherical sector corresponding to eig(αε

u,d) for all u. Hence for 0 �= ε, we
have eig(αε

u,d) = {pv| v ∈ sect(u, λε
d)}, and eig(α0

u,d) = {pv| v ∈ secto(u, λ0
d)}.

We can easily verify that eig(αε
−u,d) is determined by a spherical sector

centered around the point −u. We call µε
d the angle of this spherical sec-

tor. Hence, for 0 < ε, we have eig(αε
−u,d) = {pv| v ∈ sect(−u, µε

d)} and
eig(α0

−u,d) = {pv| v ∈ secto(−u, µε
d)}. Let σε

d denote the angle of superposi-
tion states. Then,

cos λε
d = ε + d , (11.44)

cos µε
d = ε− d , (11.45)

σε
d = π − λε

d − µε
d , (11.46)

λε
−d = µε

d and σε
−d = σε

d . (11.47)

u

-u

d

d+ε

d-ε

v

v·u

Fig. 11.3. Representation of the experiment αε
u,d. We have chosen a case where

d = 0.2, and ε = 1/2. If we consider the elastic sphere example realizing this
situation, then the elastic breaks uniformly inside the interval [d − ε, d + ε], and is
unbreakable outside this interval, at the points of the set [−1, d − ε] ∪ [d + ε, 1]
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The Quantum Situation (ε = 1)

For ε = 1, we always have d = 0, and the ε-model becomes the sphere model
of the previous section, hence a quantum model for the spin of a spin 1/2
quantum entity. For the eigenstate sets, we find

eig(α1
u,0) = {pv| + 1 ≤ v · u} = {pu} , (11.48)

eig(α1
−u,0) = {pv| v · u ≤ −1} = {p−u} , (11.49)

which shows that the eigenstates are the states pu and p−u, and all the other
states are superposition states.

The Classical Situation (ε = 0)

The classical situation is the situation without fluctuations. If ε = 0, then d
can take any value in the interval [−1, +1], and we have

eig(α0
u,d) = {pv| d < v · u} , (11.50)

eig(α0
−u,d) = {pv| v · u < d} , (11.51)

which shows that for the classical situation, the only superposition states are
the states pv such that v · u = d, and all the other states are eigenstates.

A continuous transition from a pure quantum entity to a pure classical entity
is possible if we consider the ε-model and the transition from ε = 1 to ε = 0.
For values of ε such that 0 < ε < 1, we have an entity that is neither quantum
nor classical, but ‘intermediate’.

As mentioned earlier, we can prove that the intermediate situations do
not satisfy Axioms 4 and 5. Let us put forward the two theorems that we
have proven in this respect and indicate where the proofs can be found.

Theorem 4. If Axiom 4 is satisfied for the entity described by the ε model,
then ε = 0 or ε = 1.

Proof. See [49].

Theorem 5. If Axiom 5 is satisfied for the entity described by the ε model,
then ε = 0 or ε = 1.

Proof. See [49].

For a detailed study of other aspects of the ε-model, we refer the reader
to [48–53].
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11.8 Reflections on the New Theory

In the previous section, we saw that the quantum probability structure can
be explained as being a consequence of the presence of fluctuations on the in-
teraction between the measurement apparatus and the physical entity under
consideration. The amount and the nature of the distribution of the these
fluctuations determines the amount of deviation of the probability structure
from a classical Kolmogorovian structure. The quantum mechanical probabil-
ity structure appears for a situation with the maximal amount of fluctuations
with a uniform distribution. There exist intermediate situations ‘in-between
classical and quantum’, where the amount of fluctuation is neither zero nor
maximal, and we have shown that these intermediate situations cannot be
described within an axiomatic approach where the 6 axioms are satisfied.
Furthermore, it is Axioms 4 and 5 that are at the origin of this impossibility.

More specifically, the intermediate situations cannot be described when
the nonclassical parts of the state property space are represented by Hilbert
spaces as in standard quantum mechanics. This indicates that a satisfactory
modelling of the classical limit will only be possible within a more general
theory where Axioms 4 and 5 are relaxed. Since Axioms 4 and 5 are also
the axioms that stand in the way of a description of the situations of a joint
entity consisting of two separated quantum entities, we believe that these
two axioms should really be relaxed and replaced by other axioms if we wish
to proceed. Since Axiom 5 (the covering law) is equivalent to the existence
of a vector space structure for the set of states of the physical entity under
consideration, we believe that the superposition principle can no longer be
seen as a general principle which is always satisfied.

11.8.1 Nonlocality is Nonspatiality

In this section, we would like to put forward another fundamental conse-
quence of the hidden measurement hypothesis. Suppose we consider the hid-
den measurement explanation for the concrete situation of the state of a
quantum entity described by a wave function ψ(x, y, z), element of L2(R3),
the Hilbert space of the square integrable complex functions of three real vari-
ables. Suppose that the wave function is well spread out and hence has the
form of a Gaussian. In quantum jargon this means that the quantum entity
under consideration is well delocalized. Suppose that we make a measurement
of position, localizing the quantum entity within a region A of space. The
new wave function, after the measurement, is given by

φ(x, y, z) =
χA ◦ ψ(x, y, z)
‖χA ◦ ψ(x, y, z)‖ , (11.52)

where χ is the characteristic function of the region A of space, and hence
an orthogonal projection operator of the Hilbert space L2(R3). The quantum
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entity after the measurement is much more localized, i.e., it is localized within
the region A of space. From the hidden measurement hypothesis, it follows
that the original wave function ψ(x, y, z) describes a reality of the quantum
entity under consideration, that is changed by the measurement into another
reality of the quantum entity. Hence this is a reality that is not inside space.
Even the wave function φ(x, y, z) describes a reality that is still not inside
space. What happens is that, starting from a nonspatial state ψ(x, y, z), the
measurement transforms this state into another state φ(x, y, z) which is some-
what more spatial, because representing the quantum entity within the region
A of space, but still nonspatial inside A. Only a delta function would describe
a reality that is inside space, hence as a limiting case.

This means that the hidden measurement hypothesis has as a consequence
that the ‘locus’ of a quantum entity is created by the position measurement
itself and does not exist before the measurement has been performed. Nonlo-
cality has to be interpreted as nonspatiality, and space cannot be seen as the
theatre of all reality. Reality is much bigger than those parts of it that are
contained inside space. Space should be interpreted as a structure which has
emerged together with the macroscopic material entities that have emerged
from the microscopic quantum entities, and it has emerged as ‘their’ space,
meaning the ‘space’ in which these macroscopic entities exist and interact,
as an emergent structure.

We have developed this picture in great detail in our group in Brussels
and have called the philosophical view that corresponds to it the ‘creation
discovery view’ [54–58].

11.8.2 Why General Relativity is not a Good Starting Point

The hidden measurement hypothesis also implies that the whole of the uni-
verse can still be supposed to be deterministic. The hidden measurement
hypothesis does not imply this, but leaves it open as a possibility. In other
words, quantum probabilities, which cannot be avoided if one describes a
physical entity where there are intrinsic fluctuations present on the inter-
action between the measurement apparatus and the entity, can disappear if
one focuses on a description of the whole of reality. In this sense, quantum
structure and quantum probability appear as a consequence of considering a
piece of the universe, and such a piece that it can only be studied by means
of measurements that contain intrinsic fluctuations in their interactions with
this piece. Classical entities, in this view, are special pieces of the universe,
pieces such that there are measurements available that do not have these
intrinsic fluctuations.

Having said this, it would mean that a deterministic theory like general
relativity could eventually be the starting point for the new theory to be
developed. This is true, except that there is a very important and somewhat
hidden assumption in relativity theory, as it is currently set up, namely, the
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assumption that the set of events has to be described by the points of a four-
dimensional manifold, the points being interpreted as spacetime coordinates
of the events. This assumption is the one that makes it impossible, in our
opinion, to use the approach of general relativity theory as a starting point for
the new theory to be developed. In [59–62], we have worked out an approach
that could remedy this state of affairs. The main idea is that the set of
happenings (we have introduced the concept ‘happening’ in [59–62] to replace
the concept ‘event’, to make it clear that what we do is different from general
relativity) does not a priori coincide with the set of spacetime points. In the
next section we explain the ideas and approach presented in [59–62].

11.9 A Possible Framework

In this section we propose a framework that could be used to construct ‘the
new theory’ that would have quantum mechanics and relativity theory as
special cases. To elaborate this framework we make use of all the insights
that an operational and realistic approach to quantum mechanics has given
us. More specifically, we also use these insights for the case of relativity theory.

To do so we want to analyze the way in which we penetrate, clothe and
decorate reality starting from our personal experiences. The main point we
want to make is that there is a complex and largely forgotten process at the
origin of how we penetrate, clothe and decorate reality, and it is by analyzing
in detail this process that we will be able to see clearly through many of the
paradoxical aspects of reality. Reality is out there. But the way that we know
reality is through our experience of it. We order these experiences in a certain
way, and are finally left over with a world view, in which what is ‘real’ has
its specific place and function. We will see that physical theories, classical
mechanics, quantum mechanics and relativity theory, have great difficulty in
recovering and restating carefully what reality is, as we have introduced it
within our pre-scientific personal world views. We will also see that a lot of
the paradoxical aspects of our physical theories are due to a poor and fuzzy,
and even sometimes wrong, understanding of this process.

11.9.1 Personal Experiences, Creations and Happenings

All the data that we gather about reality have come to us through our experi-
ences. We consider an experience to be an interaction between a participator
and a piece of the world. When the participator lives his or her experience,
we say that this experience is present, and we call it the present experi-
ence of the participator. Note that we consciously use the word ‘participator’
instead of the word ‘observer’ to indicate that we consider the cognitive re-
ceiver to participate creatively in his or her cognitive act. For the situation of
a measurement, we consider the experimentalist and his or her experimental
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apparatus together to constitute the participator, and the physical entity un-
der study is the piece of the world that interacts with the participator. The
experiment is part of the experience.

Let us consider again the example that we mentioned in Sect. 11.4.2, but
now in terms of experiences. Consider a piece of wood and two experiences
that we can have with the piece of wood. One experience consists in test-
ing whether the piece of wood ‘burns well’. The test consists in applying a
sufficient amount of fire to the piece of wood for a sufficient length of time
to see whether it burns. Let us suppose that the piece of wood does indeed
burn well, and let us call this experience E1 : I apply fire to the piece of wood
and it burns. Another experience that we consider tests whether the piece
of wood floats on water. The test consists in putting the piece of wood on
water and seeing whether it floats. Let us suppose that the piece of wood
does indeed float on water, and let us call this experience E2 : I put the piece
of wood on water and it floats.

We have deliberately chosen these two experiences, because it is clear
that we cannot experience them at once. If we tried to make the piece of
wood burn and float on water, this would not work out well. So parts of both
experiences are clearly incompatible, in the sense that they cannot be realized
at the same time. Even though this is obvious for everybody that considers
our example, there are parts of both experiences that we do consider to be
present at the same time. Indeed, we do attribute two ‘properties’ to the piece
of wood. One property is expressed by saying that the piece of wood has the
property of burning well, and the other property is expressed by saying that
the piece of wood has the property of floating on water. We believe that this
single piece of wood, with which we do not have any of the two experiences
E1 and E2, has at the same time the properties of ‘burning well’ and ‘floating
on water’.

Let us give a second example, that was originally introduced in [59]. Con-
sider the following situation: I am inside my house in Brussels. It is night,
the windows are shut. I sit in a chair, reading a novel. I have a basket filled
with walnuts at my side, and from time to time I take one of them, crack it
and eat it. New York exists and is busy. Let us enumerate the experiences
that are relevant in this situation: E3 (I read a novel), E4 (I experience the
inside of my house in Brussels), E5 (I experience that it is night), E6 (I take
a walnut, crack it and eat it), E7 (I experience that New York is busy).

As in the case with the piece of wood, where it is impossible to experience
E1 and E2 at once, here also I do not experience all these experiences at
once. On the contrary, in principle, I only experience one experience at once,
namely my present experience. Let us suppose that my present experience is
E3 (I read a novel). Then a lot of other things happen while I am living this
present experience. These things happen in my present reality. While I am
reading the novel, some of the happenings that happen are the following: H3
(the novel exists), H4 (the inside of my house in Brussels exists), H5 (it is
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night), H6 (the basket and the walnuts exist, and are at my side), H7 (New
York exists and is busy). All the happenings, and much more, happen while
I live the present experience E3 (I read a novel).

Why is the structure of reality such that what I have just said is evident
for everybody? Certainly it is not because I also experience these other hap-
penings. My only present experience is the experience of reading the novel.
But, and this is the origin of the specific structure of reality as it appears
in my world view, I could have chosen to live an experience including one
of the other happenings in replacement of my present experience. Let me
recapitulate the list of the experiences that I could have chosen to experience
instead of my present experience: E4 (I observe that I am inside my house
in Brussels), E5 (I see that it is night), E6 (I take a walnut, crack it and
eat it), E7 (I take the plane to New York and see that it is busy). The same
is true for the example of the piece of wood. While I live the experience E1
(I apply fire to the wood and it burns), I could have lived, instead of this
experience, the other experience E2 (I put the wood on water and it floats),
but I would have had to take another decision in my past, before I decided
to start applying fire to the piece of wood.

These examples indicate how reality is structured within my world view.
First of all we have to identify two main aspects of an experience: the aspect
that is controlled and created by me, and the aspect that just happens to me
and can only be known by me. Let us introduce this important distinction in
a formal way. To see what I mean, let us consider the experience E6 (I take
a walnut, crack it and eat it). In this experience, there is an aspect that is an
action by me, the taking and the cracking, and the eating. There is also an
aspect that is an observation by me, the walnut and the basket. By studying
how our senses work, I can indeed say that it is the light reflected on the
walnut, and on the basket, that gives me the experience of walnut and the
experience of basket. This is an explanation that can only be given now; it
is, however, not what was known in earlier days when the first world views of
humanity were constructed. But without knowing the explanation delivered
now by a detailed analysis, we could see very easily that an experience always
contains two aspects, a creation aspect, and an observation aspect, simply
because our will can only control part of the experience. This is the creation
aspect. For example, in E3 (I read a novel) the reading is created by me, but
the novel is not created by me. In general we can indicate for an experience
the aspect that is created by me and the aspect that is not created by me.
The aspect not created by me lends itself to my creation.

We can reformulate an experience in the following way: E6 (I take a
walnut, crack it and eat it) becomes E6 (the walnut is taken by me, and lends
itself to my cracking and eating) and E3 (I read a novel) becomes E3 (the
novel lends itself to my reading). The taking, cracking, eating, and reading
will be called creations or actions and will be denoted by C6 (I take, crack
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and eat) and C3 (I read). The walnut and the novel will be called happenings
and will be denoted by H6 (the walnut) and H3 (the novel).

A creation is that aspect of an experience created, controlled, and
acted upon by me, and a happening is that aspect of an experience
lending itself to my creation, control and action.

An experience is determined by a description of the creation and a descrip-
tion of the happening. Creations are often expressed by verbs: to take, to
crack, to eat, and to read, are the verbs that describe my creations in the
examples. The walnut and the novel are happenings that have the additional
property of being objects, which means happening with a great stability.
Often happenings are expressed by a substantive.

Every one of my experiences E consists of one of my creations C and
one of my happenings H, so we can write E = (C, H).

A beautiful image that can be used as a metaphor for our model of the world
is the image of the skier. A skier skis downhill. At every instant he or she
has to be in complete harmony with the form of the mountain underneath.
The mountain is the happening. The actions of the skier are the creation.
The skier’s creation, fused in harmony with the skier’s happening, is his or
her experience.

11.9.2 How We Penetrate and Clothe Reality

Let us return to the collection of experiences: E3 (I read a novel), E4 (I
observe that I am inside my house in Brussels), E5 (I see that it is night), E6
(I take a walnut, crack it and eat it) and E7 (I take the plane to New York
and see that it is busy). Let us now represent the way in which we penetrate
and clothe the reality that is made out of this small collection of experiences.
E3 (I read a novel) is my present experience. In my past I could, however,
at several moments have chosen to do something else and this choice would
have led me to have a present experience other than E3 (I read a novel). For
example, one minute ago I could have decided to stop reading and observe
that I am inside the house. Then E4 (I observe that I am inside my house in
Brussels) would have been my present experience. Two minutes ago I could
have decided to stop reading and open the windows and see that it is night.
Then E5 (I see that it is night) would have been my present experience.
Three minutes ago I could have decided to stop reading, take a walnut from
the basket, crack it, and eat it. Then E6 (I take a walnut, crack it and eat it)
would have been my present experience. Ten hours ago I could have decided
to take a plane and fly to New York and see how busy it was. Then E7 (I go
to New York and see that it is busy) would have been my present experience.

Even when they are not the happening aspect of my present experi-
ence, happenings ‘happen’ at present if they are the happening aspect
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of an experience that I could have lived in replacement of my present
experience, if I had so decided in my past.

The fact that a certain experience E consisting of a creation C and a hap-
pening H is for me a possible present experience depends on two factors:

• I have to be able to perform the creation,
• the happening has to be available.

For example, the experience E4 (I observe that I am inside my house in
Brussels) is a possible experience for me, if:

• I can perform the creation that consists in observing the inside of my
house in Brussels, in other words, if this creation is in my personal power,

• the happening ‘the inside of my house in Brussels’ has to be available to
me, in other words, this happening has to be contained in my personal
reality.

The collection of all creations that I can perform at the present I
will call my present personal power. The collection of all happenings
that are available to me at the present I will call my present personal
reality.

I define as my present personal reality the collection of these happenings, the
collection of happenings that are available to one of my creations if I had
used my personal power in such a way that at the present I could fuse one of
these creations with one of these happenings.

My present personal reality consists of all happenings that are avail-
able to me at present. My past reality consists of all happenings that
were available to me in the past. My future reality consists of all hap-
penings that will be available to me in the future. My present personal
power consists of all creations that I can perform at present. My past
personal power consists of all the creations that I could perform in
the past. My future personal power consists of all creations I shall be
able to perform in the future.

Happenings can happen ‘together and at once’, because to happen a happen-
ing does not have to be part of my present experience. It is sufficient that it
is available, and things can be available simultaneously. Therefore, although
my present experience is only one, my present personal reality consists of an
enormous amount of happenings all happening simultaneously. This concept
of reality is not clearly understood in present physical theories. Physical the-
ories know how to treat past, present and future. But reality is a construction
about the possible. It is a construction about the experiences I could have
lived but probably will never live.
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11.9.3 Material Time and Material Happenings

From ancient times, humanity has been fascinated by happenings going on
in the sky, the motion of the sun, the changes of the moon, the motions
of the planets and the stars. These happenings in the sky are periodic. By
means of these periodic happenings humans started to coordinate the other
experiences. They introduced the counting of the years, the months and the
days. Later on watches were invented to be able to coordinate experiences of
the same day. And in this sense material time was introduced into the reality
of the human species. Again we would like to analyze the way in which this
material time was introduced, to be able to use it operationally if later on we
analyze the paradoxes of time and space. My present experience is seldom
a material time experience. But in replacement of my present experience, I
could always have consulted my watch, and in this way live a material time
experience E8 (I consult my watch and read the time). Hence, although my
present experience is seldom a material time experience, my present reality
always contains a material time happening, namely the happening H8 (the
time indicated by my watch), which is the happening to which the creation
C8 (I consult) is fused to form the experience E8. It is in this way that time
coordination is introduced into my personal reality.

The collection of all creations that I can perform at time t, I will call
my personal power at time t. The collection of all happenings that are
available to me at time t, I will call my personal reality at time t.

Of course, as mentioned before, at time t, only one of my creations will be
fused with one of the available happenings, which will lead to one experience
that I live at time t.

11.9.4 Penetration in Depth and Width, Entity and Space

The two examples that we have considered give rise to seemingly different
aspects of reality. We consider two happenings of the piece of wood, H1 (the
piece of wood entails the property of burning well) and H2 (the piece of wood
entails the property of floating on water), and two creations connected to this
piece of wood, C1 (I apply fire to the piece of wood) and C2 (I put the piece
of wood on water). Then the two experiences that we have considered are
E1 = (C1, H1) and E2 = (C2, H2). The reason that we attribute the two
properties ‘the piece of wood burns well’ and ‘the piece of wood floats on
water’ to the piece of wood, is because we know that the two happenings H1
and H2 are available at once for one of the two creations C1 or C2 that I
would choose to fuse to give rise to one of the experiences E1 or E2.

The example of the piece of wood shows us how we penetrate reality
in depth, attributing properties to entities. Of course, we have to be aware
that a more profound way of seeing this process of penetration in depth is
the following. Certain happenings such as H1 and H2 cluster together, and
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the entity ‘piece of wood’ is the collection of all these happenings. We call
this way of clustering happenings together into an entity, our ‘penetration
in depth’ of reality. All other properties of the piece of wood are linked to
happenings that we have classified within the process of penetration in depth.
For example the weight of the piece of wood, the fact that it is constituted of
cells, of molecules, etc. The fact that the piece of wood constitutes an entity,
is due to the fact that all these happenings do indeed cluster together. Of
course, as we know, this clustering together is not absolute. We can break the
piece of wood into two pieces of wood, and destroy some of the clustering.

Our other example is a typical example of what we will call ‘penetration in
width’. The happenings H3, H4, H5, H6 and H7 are not clustered together,
and indeed we will not consider them as part of an entity. At first sight
we could say that these happenings are situated in ‘space’. But again we
have to correct ourselves. We should in fact proceed the other way around.
Exactly as we have ordered the happenings that we collect by penetration in
depth into an entity, because they are clustered together, we have ordered
the happenings that we find by penetration in width into space. That is the
way that we finally arrive at an image of my present reality consisting of
space being filled up with different entities, where each entity is a cluster of
happenings ordered by penetration in depth, and the different entities are
spread over space, in this way attributing to the ordering of the happenings
that we have collected by penetration in width.

It would be very fruitful to perform an analysis of reality where the divi-
sion into penetration in depth and penetration in width were explicitly seen
as two specific processes of penetration. In future work we hope to engage in
such an analysis, because we believe that it will reveal deep and new insights
into the nature of reality. In this paper we analyze some other aspects of this
penetration. In our penetration in width, something remarkable occurs. We
find entities, like our fellow human beings, occupying places in space other
than the space we occupy ourselves. And we call these entities ‘fellow human
beings’ because we believe that they also penetrate their personal reality in
a similar way to the way that we penetrate our own personal reality. The big
adventure of communication and dialogue starts here. Note that we do not
experience something similar in our personal penetration in depth.

11.10 The Nature of the Present

Before being able to analyze the way in which we fuse personal realities into
an encompassing intersubjective reality, we have to analyze the nature of
space within our approach in a detailed way. To do so we have to take into
account the results of relativity theory.
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11.10.1 Relativity Theory and My Personal Present

Let us suppose that I am here and now in my house in Brussels, and it is
10 April 2003, 3 PM exactly. I want to find out ‘what is the material reality
for me now?’. Let us use the definition of reality given in the last section
and consider a place in New York, for example at the entrance of the Empire
State Building, and let us denote the center of this place by (x1, x2, x3). I
also choose now a certain time, for example 10 April 2003, 3 PM exactly, and
let me denote this time by x0. I denote the happening that corresponds to
the spot (x1, x2, x3) located at the entrance of the Empire State Building at
time x0 by H9. I can now try to investigate whether this happening H9 is
part of my personal present.

The question I have to answer is: can I find a creation of localization l ?
In this case this creation is just the observation of the spot (x1, x2, x3) at the
entrance of the Empire State Building, at time x0, that can be fused with
this happening m. The answer to this question can only be investigated if
we take into account the fact that I, who want to try to fuse a creation of
localization to this happening, am bound to my body, which is also a material
entity. I must specify the question introducing the material time coordinate
that I ascertain by my watch. So suppose that I coordinate my body by the
four numbers (y0, y1, y2, y3), where y0 is my material time, and (y1, y2, y3) is
the center of mass of my body. We now apply our operational definition of
reality. At this moment, 10 April 2003 at 3 PM exactly, my body is in my
house in Brussels, which means that (y0, y1, y2, y3) is a point such that y0
equals 10 April 2003, 3 PM, and (y1, y2, y3) is a point, the center of mass of
my body, somewhere in my house in Brussels. This shows that (x0, x1, x2, x3)
is different from (y0, y1, y2, y3), in the sense that (x1, x2, x3) is different from
(y1, y2, y3) while x0 = y0. The question is now whether (x0, x1, x2, x3) is a
point of my personal present, hence whether it makes sense for me to claim
that now, 10 April 2003, 3 PM, the entrance of the Empire State Building
‘exists’. If our theoretical framework corresponds in some way to our pre-
scientific construction of reality, the answer to the foregoing question should
be affirmative. Indeed, we all believe that ‘now’ the entrance of the Empire
State Building exists. Let us try to investigate this question in a rigorous way
within our framework.

We have to check whether it was possible for me to decide somewhere
in my past, hence before 10 April 2003, 3 PM, to change some of my plans
of action, in such a way that I would decide to travel to New York, and
arrive exactly on 10 April 2003, 3 PM at the entrance of the Empire State
Building, and observe the spot (x1, x2, x3). There are many ways to realize
this experiment, and we will not go into details here, because we shall come
back later to the tricky parts of the realization of this experiment. I could
thus have experienced the spot (x1, x2, x3) on 10 April 2003, 3 PM, if I had
decided to travel to New York at some time in my past. Hence (x0, x1, x2, x3)
is part of my reality. It is sound to claim that the entrance of the Empire State
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Building exists right now. And we note that this does not mean that I have to
be able to experience this spot at the entrance of the Empire State Building
now, 10 April 2003, 3 PM, while I am inside my house of Brussels. I repeat
again, reality is a construction about the possible happenings that I could
have fused with my actual creation. And since I could have decided so in my
past, I could have been at the entrance of the Empire State Building, now,
10 April 2003, 3 PM. Up to this point, one could think that our framework
only confirms our intuitive notion of reality, but our next example shows that
this is certainly not the case.

Let us consider the same problem as above, but for another point of time–
space. We consider the point (z0, z1, z2, z3), where (z1, z2, z3) = (x1, x2, x3),
hence the spot we envisage is again the entrance of the Empire State Building,
and z0 is 11 April 2003, 3 PM exactly, hence the time that we consider is,
tomorrow 3 PM. If I ask now first, before checking rigorously by means of our
operational definition of reality, whether this point (z0, z1, z2, z3) is part of my
personal present, the intuitive answer here would be ‘no’. Indeed, tomorrow
at the same time, 3 PM, is in the future and not in the present, and hence
it is not real, and hence no part of my personal present (this is the intuitive
reasoning). If we go now to the formal reasoning in our framework, then we
can see that the answer to this question depends on relativity theory. Indeed,
let us first analyze the question in a Newtonian conception of the world to
make things clear.

Note that in a Newtonian conception of the world (which has been proved
experimentally wrong, so here we are just considering it for the sake of clar-
ity), my personal present coincides with ‘the present’, namely all the points
of space that have the same time coordinate 10 April 2003, 3 PM. This means
that the entrance of the Empire State Building tomorrow ‘is not part of my
personal present’. The answer is clear here and in this Newtonian conception,
my present personal reality is just the collection of all (u0, u1, u2, u3) where
u0 = y0 and (u1, u2, u3) are arbitrary. The world is not Newtonian, this we
now know experimentally; but if we put forward an ether theory interpreta-
tion of relativity theory (let us refer to such an interpretation as a Lorentz
interpretation) the answer again remains the same. In a Lorentz interpre-
tation, my present personal reality coincides with the present reality of the
ether, namely all arbitrary points of the ether that are at time y0, 10 April
2003, 3 PM, and again tomorrow the entrance of the Empire State Building
is not part of my personal present.

For an Einsteinian interpretation of relativity theory the answer is dif-
ferent. To investigate this I must once again ask the question of whether it
would have been possible for me to have made a decision in my past such that
I would have been able to make (y0, y1, y2, y3) coincide with (z0, z1, z2, z3).
The answer here is that this is very easy to do, because of the well known,
and experimentally verified, effect of time dilatation. Indeed, it would for ex-
ample be sufficient to go back a few weeks in my past, let us say to 15 March
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2003, 3 PM, and then decide to step inside a spaceship that can move with
almost the speed of light, so that the time when I am inside this spaceship
slows down in such a way, that when I return with the spaceship to planet
earth, still flying with a speed close to the velocity of light, I arrive in New
York at the entrance of the Empire State Building with my personal material
watch indicating 10 April 2003, 3 PM, while the watch that remained at the
entrance of the Empire State Building indicates 11 April 2003, 3 PM. Hence
in this way I make (y0, y1, y2, y3) coincide with (z0, z1, z2, z3), which proves
that (z0, z1, z2, z3) is part of my personal present.

First one might say that in practice it is not yet possible to make such
a flight with a spaceship. But this point is not crucial for our reasoning.
It is sufficient that we can do it in principle. We have not yet made this
explicit comment, but obviously if we have introduced in our framework an
operational definition for reality, then we do not have to interpret such an
operational definition in the sense that only operations that are currently
possible, taking into account the present technical capabilities of humanity,
can be performed. If we were to advocate such a narrow interpretation, then
even in a Newtonian conception of the world, the star Sirius would not exist,
because we cannot yet travel to it. What we mean by ‘operational’ is much
wider. It must be possible, taking into account the actual physical knowledge
of the world, to conceive of a creation that can be fused with the happening
in question, and then this happening pertains to our personal reality.

11.10.2 Einstein versus Lorentz

We can come now to one of the points that we want to make, clarifying the
time paradox that distinguishes an ether interpretation of relativity (Lorentz)
from an Einsteinian interpretation. To remain clear about this question, we
must return to the essential aspect of the construction of reality in our frame-
work, namely, the difference between a creation and a happening. In order to
clarify this, we first give another example.

Suppose that I am an artist and I consider once again my personal present,
on 10 April 2003, 3 PM, as indicated on my personal material watch. I am in
my house in Brussels and let us further specify: the room where I am is my
studio, surrounded by paintings, of which some are finished, and others are
still to be completed. Clearly all these paintings exist in my present reality,
10 April 2003, 3 PM. Some weeks ago, when I was still working on a painting
that is now finished, I could certainly have decided to start to work on another
painting, a completely different one, that does not now exist. Even if I could
have decided this some weeks ago, everyone will agree that this other painting,
that I never started to work on, does not exist now, 10 April 2003, 3 PM.
The reason for this conclusion is that the making of a painting is a creation
and not a happening. It is not the case that there is some ‘hidden’ space
of possible paintings such that my choice several weeks ago to realize this
other painting would have made me detect it. If this were to be the situation
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with paintings, then indeed this painting would also exist now, in this hidden
space. But with paintings this is not the case. Paintings that are not realized
by the painter are potential paintings, but they do not exist.

With this example of the paintings we can explain very well the difference
between Lorentz and Einstein. For an ether interpretation of relativity, the
fact that my watch is slowing down while I decide to fly with the spaceship
at nearly the speed of light and return to the entrance of the Empire State
Building when my watch indicates 10 April 2003, 3 PM, while the watch
that remained at the Empire State Building indicates 11 April 2003, 3 PM,
is interpreted as a creation. It is seen as if there is a real physical effect
of creation on the material functioning of my watch while I travel with the
spaceship, and this effect of creation is generated by the movement of the
spaceship through the ether. Hence the fact that I could observe the entrance
of the Empire State Building tomorrow 11 April 2003, 3 PM, if I had decided
some weeks ago to start travelling with the spaceship, only proves that the
entrance of the Empire State Building tomorrow is a potentiality. Just like the
fact that this painting that I never started to paint could have been here in
my workshop in Brussels is a potentiality. This means that as a consequence
the spot at the entrance of the Empire State Building tomorrow is not part of
my present reality, just as the possible painting that I did not start to paint
is not part of my present reality.

If, however, we put forward an Einsteinian interpretation of relativity,
then the effect on my watch during the spaceship travel is interpreted in a
completely different way. There is no physical effect on the material function-
ing of the watch – remember that most of the time dilatation takes place not
during the accelerations that the spaceship undergoes during the trip, but
during the long periods of flight with constant velocity nearly at the speed
of light – but the flight at a velocity close to the speed of light ‘moves’ my
spaceship in the time–space continuum in such a way that time coordinates
and space coordinates get mixed. This means that the effect of the space-
ship travel is an effect of a voyage through the time–space continuum, which
brings me at my personal time of 10 April 2003, 3 PM to the entrance of the
Empire State Building, where the time is 11 April 2003, 3 PM. And hence
the entrance of the Empire State Building is a happening, an actuality and
not just a potentiality, and it can be fused with my present creation.

This means that the happening (z0, z1, z2, z3) of 11 April 2003, 3 PM,
entrance of the Empire State Building, is a happening that can be fused
with my creation of observation of the spot around me on 10 April 2003, 3
PM. Hence it is part of my personal present. The entrance of the Empire
State Building on 11 April 2003, 3 PM exists for me today, 10 April 2003,
3 PM. If we advocate an Einsteinian interpretation of relativity theory we
have to conclude from the foregoing section that my personal reality is four-
dimensional. This conclusion will perhaps not amaze those who have always
considered the time–space continuum of relativity as representing the new
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reality. However, now that we have defined very clearly what this means, we
can start investigating the seemingly paradoxical conclusions that are often
brought forward in relation with this insight.

11.10.3 The Process View and the Geometric View

The paradoxical situation that we can now try to resolve is the confronta-
tion of the process view of reality with the geometric view. It is often
claimed that an interpretation where reality is considered to be related to
the four-dimensional time–space continuum contradicts another view of re-
ality, namely the one where it is considered to be of a process-like nature.
By means of our framework we can now understand exactly what these two
views imply and see that there is no contradiction.

Let us now repeat what we mean in our framework when we conclude
that my personal reality is four-dimensional. It means that, at a certain spe-
cific moment, which I call my present, the collection of places that exist,
and that I could have observed if I had decided to do so in my past, has
a four-dimensional structure, well-represented mathematically by the four-
dimensional time–space continuum. This is indeed my personal present. This
does not imply, however, that this reality is not constantly changing. Indeed
it is constantly changing. New entities are created in it and other entities
disappear, while others are very stable and remain in existence. This is in
fact the case in all of the four dimensions of this reality.

Let us consider an example. We came to the conclusion that now, on 10
April 2003, 3 PM, the entrance of the Empire State Building exists for me
while I am in my house in Brussels. But this is not a statement of determin-
istic certainty. Indeed, it is quite possible that by some chain of events, and
without me knowing of these events, that the Empire State Building has dis-
appeared, for example, because it has been rebuilt. Thus my statement about
the existence of the entrance of the Empire State Building ‘now’, although
almost certainly true, is not deterministically certain.8 The reason is again
the same, namely, that reality is a construction of what I would have been
able to experience, if I had decided differently in my past. The knowledge
that I have about this reality is complex and depends on the changes that
go on continuously in it. What I know from experience is that there do exist
material objects, and the Empire State Building is one of them, that are
rather stable, which means that they remain in existence without changing
too much. To these stable objects, material objects but also energy fields, I
can attach the places from which I can observe them. The set of these places
has the structure of a four-dimensional continuum. At the same time all
these objects are continuously changing and moving in this four-dimensional
8 We note that our example of the entrance of the Empire State Building was given

in [60, 61], long before the terrible chain of events that led to the destruction of
the Twin Towers came into being.
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scenery. Most of the objects that I have used to shape my intuitive model
of reality are the material objects that surround us here on the surface of
the earth. They are all firmly fixed in the fourth dimension (the dimension
indicated by the 0 index, and we should not call it the time dimension) while
they move easily in the other three dimensions (those indicated by the 1, 2,
and 3 indexes).

Other objects, such as electromagnetic fields, have a completely differ-
ent manner of being and changing in this four-dimensional scenery. This
means that in our framework there is no contradiction between the four-
dimensionality of the set of places and the process-like nature of the world.
When we come to the conclusion that the entrance of the Empire State Build-
ing, tomorrow, 11 April 2003, 3 PM also exists for me now, then our intuition
reacts more strongly to this statement, because intuitively we think that this
implies that the future exists, and hence is determined and hence no change
is possible. This is an incorrect conclusion which comes from the fact that,
over a long period of time, we have had the intuitive image of a Newtonian
present, as being completely determined. We have to be aware of the fact
that it is the present, even in the Newtonian sense, which is not determined
at all. We can only say that the more stable entities in our present reality are
more strongly determined as being there, while the places where they can be
are always there, because these places are stable with certainty.

11.10.4 The Singularity of My Personal Present

We now come back to the construction of reality in our framework, which we
have confronted here with the Einsteinian interpretation of relativity theory.
Instead of wondering about the existence of the entrance of the Empire State
Building tomorrow, 11 April 2003, 3 PM, I can also question the existence
of my own house at the same place of the time–space continuum. Clearly I
can make an analogous reasoning and then come to the conclusion that my
own house, and the chair where I am sitting while reading the novel, and
the novel itself, and the basket of walnuts beside me, etc., all exist in my
present reality on 11 April 2003, 3 PM, hence tomorrow. If we put it like
that, we are even more sharply confronted with a counterintuitive aspect of
the Einsteinian interpretation of relativity theory. But in our framework, it
is a correct statement. We have to add, however, that all these objects that
are very close to me now, on 10 April 2003, 3 PM, do also exist in my present
reality on 11 April 2003, 3 PM, but the place in reality where I can observe
them is of course much further away for me. Indeed, to be able to get there,
I have to fly away with a spaceship at nearly the velocity of light.

We now come to a very peculiar question that will confront us with the
singularity of our reality construction. Where do I myself exist? Do I also exist
tomorrow 11 April 2003, 3 PM? If the answer to this question is affirmative,
we would be confronted with a very paradoxical situation. Because indeed I,
and this counts for the reader too, cannot imagine myself to exist at different
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instants of time. But our framework clarifies this question very easily. It is
impossible for me to make some action in my past such that I would be able
to observe myself tomorrow 11 April 2003, 3 PM. But if I had chosen to fly
away and come back with the spaceship, it would be quite possible for me to
observe now, on 10 April 2003, at 3 PM on my personal watch, the inside of
my house tomorrow 11 April 2003, 3 PM. As we remarked previously, this
proves that the inside of my house tomorrow is part of my personal reality
today. But I will not find myself in it. Because to be able to observe my
house tomorrow 11 April 2003, 3 PM, I have had to leave it. Hence, in this
situation I will enter my house, being myself still at April 10, 2002, 3 PM,
but with my house and all the things in it, being at April 11, 2002, 3 PM.
This shows that there is no contradiction. In fact, if it comes to a much more
common happening, the existence of the Empire State Building on 10 April
2003, 3 PM, nobody would even make this mistake, and think that, since to
experience this existence I would have to take the plane and fly to New York
10 hours before, this would imply that I were in two places at once, in my
house and in New York.

We can conclude this analysis of the nature of our personal present with
the following observation. The nature of the present does not correspond
very well to our intuitive idea of what this nature is. Indeed, intuitively
we think of the present – our intuition being guided by a Newtonian world
view – as the collection of all entities and their interactions that are inside
space ‘now’, simultaneously with our personal ‘now’. This is an incorrect
conception. First of all the present has a four-dimensional structure and not a
three-dimensional one, as would follow from a Newtonian world view. We note
that this is mainly a consequence of the exactness of relativity theory. But
secondly, and this is more important, and also not understood by scientists
that are aware of relativity theory, the present is more like what we intuitively
think about the future. It is not determinate in the simple way that we
imagine. It is the collection of all happenings that I could have fused with
one of my present creations, if I had decided to do something different in
my personal past. This collection is determined is some way, but in a rather
complicated way, which is equivalent to the way we intuitively feel the future
to be determined in some complicated manner. Let us try to see the nature
of this determination more clearly.

11.10.5 The Structure of My Personal Present

The basic structure of my personal present is represented in Fig. 11.4. I live
the experience E3 at time t5, and this is my only present experience. But
at times t4, t3, t2, and t1, I could have chosen another action than the one
that leads to experience E3, and that would then lead me to experience E4,
E5, E6, or E7, respectively. That is the reason why happenings H4, H5, H6,
and H7 exist at time t5 in my personal present. We represent the situation
analyzed in Sects. 11.10.1 and 11.10.2 in Fig. 11.5.
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Fig. 11.4. A representation of my personal present. I experience the experience
E3 at time t5. At time t5 happenings H4, H5, H6, and H7 also happen, because I
could have decided at times t4, t3, t2, and t1, respectively, to take another action
than the one that leads me to experience E3 at time t5

Fig. 11.5. A representation of my personal present. I experience the experience E9

at time t3. At time t3 happenings H10 and H11 also happen, because I could have
decided at times t2 and t1, respectively, to take another action than the one that
leads me to experience E9 at time t3

We showed in Sect. 11.10.4 that the situation related to the fact that
happenings that I would classify in the future in my intuitive view of the
present are also in my present does not lead to a paradox of ‘being able to
meet myself’. In the next section, we will see that our intuitive view of the
structure of the present has its roots in a further development of my personal
present, namely the development connected with joining different personal
presents into one intersubjective present.

11.10.6 Fusing of Different Personal Realities

In the foregoing we have analyzed the way I penetrate and clothe reality.
Now an extra hypothesis comes into play. We know that the world is pop-
ulated with other people, who also penetrate and clothe reality in this way,
by forming their personal reality. Let us analyze some of the fundamental
problems that appear when we attempt to fuse two such personal realities
together into one encompassing reality.

A first remark we have to make is the following. If we consider Fig. 11.5,
we see that the Empire State Building on 10 April 2003, 3 PM, as well as the
Empire State Building on 11 April 2003, 3 PM, are both happenings that are
part of my personal present on 11 April 2003, 3 PM. What is the problem
with this. I myself am only present ‘now’, living my present experience. And a
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moment later, this present experience has become one of my past experiences,
and I am into a new present experience. My stream of experiences is hence a
stream that moves from past to present, and what I have called my personal
material time tracks this stream of experiences. If we now believe that the
Empire State Building is also an entity, as I am, then we have to make the
hypothesis that the Empire State Building exists only at one moment within
its personal reality, namely its present. This means that there is a difference
between ‘exist’ for the Empire State Building, within my personal present,
and ‘exist’ for the Empire State Building within its own personal present.
Note that we have already used the personal presents of the Empire State
Building by indicating its times, 11 April 2003, 3 PM and 10 April 2003, 3
PM, which are, within the personal reality of the Empire State Building two
happenings that are not in the same reality.

The problem becomes more obvious when another person is involved.
So suppose that I consider my student Bart D’Hooghe, with whom I have
discussed some of the problems treated in this article. Then in my personal
present, Bart exists at all ‘future’ times that are indicated by his watch. In
Bart’s personal present, I exist at all future times that are indicated by my
watch, as shown in Fig. 11.6.

Fig. 11.6. Illustration of the personal present of myself and of Bart

We indicate the personal presents of myself, as they run through time,
with a parameter t, which indicates the time on my personal watch, and in a
similar way, we indicate the personal presents of Bart, as they run through
time, with a parameter u, that indicates the time on Bart’s personal watch.
Then, Bart, at all times u0, u1, u2, u3 is part of my personal present at time
t0, while I myself, at all times t0, t1, t2, t3, am part of Bart’s personal present
at time u0.

When time was Newtonian, the two types of existence could be fused
together without difficulty. Indeed, in a Newtonian time frame, it will be the
case that, for example, t0 and u0 can be said to be simultaneous, as well as t1
and u1, t2 and u2, and t3 and u3. And, if this is the case, we make a special
slice within, for example, my personal present at time t2, namely the slice
that contains exactly Bart’s personal present at time u2 (and in a similar
way t0, t1, and t3, are identified with u0, u1, and u3).
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Due to relativity theory, such a simple synchronization of the two watches,
my watch and Bart’s, cannot be made. Even though we have the deep intu-
ition that it should be possible, at my personal present at time t1, to elect
‘one’ and ‘only one’ personal present moment of Bart (hence one value of
u) to make it coincide with the t1 of my personal present, we have to be
aware that this deep intuition is not correct, given the above analysis about
the way we penetrate reality. My personal present is the collection of all the
happenings that I could have lived if I had decided something different in
my past, something that would lead me to experience the specific happening
that I am considering. The only way in which a subcollection of this collec-
tion of happenings could stand out and form a special subcollection, each of
the happenings of the subcollection being in a certain sense more specifically
related to my personal experience, is when it would be possible to classify the
things that I could have done in my past in such a way that certain things
stand out from the others. In the general scheme that we consider this is not
possible.

We can put forward the image that the personal present of Bart, each
moment of personal time of Bart following after another moment of personal
time of Bart, runs through the set of happenings that are connected with Bart
in my personal present. And in a similar way, I run through the collection
of happenings that are connected with me in the personal present of Bart.
It is still an unsolved problem, linked to the problem of synchronization in
relativity theory [63,64], whether this view can be upheld. We believe that this
problem should be analyzed, taking into account the two subtle and different
notions of reality that we consider in this paper. We intend to investigate
this problem in future work.

11.11 Conclusion

We believe that the new theory that will have quantum mechanics and general
relativity as special cases and also explain why they are special cases will have
to be formulated within a structural and mathematical context that is very
different from those of existing physical theories. The operational axiomatic
approach that we have proposed in Sects. 11.2, 11.3, 11.4, 11.5 and 11.6 can
deliver a framework for this new theory. This approach makes it possible to
formalize the subject–object actions that are possible in our world in the
most general way. In this sense it is similar to general relativity in that it
formalizes the ‘geometrical beings’ in our world in the most general way, but
it is more general, because geometrical beings are special cases of subject–
object interactions, where the subject–object action is reduced to a simple
observation.

Since we have identified two failing axioms within the set of six axioms
that make the general approach equivalent to standard quantum mechanics
with superselection rules, in relation with well-defined physical situations, i.e.,
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the situation of separated quantum entities (see Sect. 11.6.1), and the situa-
tion of the continuous transition from quantum to classical (see Sect. 11.7.3),
it will not be possible to use standard quantum mechanics for this general
enterprise, its mathematical structure being too limited. This is why the op-
erational axiomatic approach may be an essential tool to build the necessary
structure for the new theory.

The explanation we have developed for quantum probability, presented in
Sect. 11.7, shows that the non-Kolmogorovian nature of quantum probability
can be explained as being the consequence of a lack of knowledge about the
interaction between the measuring apparatus and the physical entity under
consideration, hence due to the presence of fluctuations in this interaction.
This means that there is no incompatibility with the hypothesis of a universe
as a whole that is deterministic, and the presence of quantum probability, as
an irreducible probability for the description of a piece of this universe that
we call physical entity.

The third important aspect of our approach is the interpretation of nonlo-
cality. From our explanation for the quantum probability structure, it follows
that nonlocality has to be interpreted as nonspatiality. Nonlocal states of a
quantum entity are nonspatial states, meaning literally that a quantum en-
tity in such a state is not inside space. As a consequence, space cannot be
seen as an all-embracing theatre for reality, but must be interpreted as a
macroscopic structure that has emerged in the same process of emergence of
macroscopic physical entities from the micro-world. Space is ‘the space’ of
the macroscopic physical entities and not of the microscopic quantum enti-
ties. In our opinion this is the main reason why the global and fundamental
approach of general relativity cannot incorporate the quantum world. One of
the steps of general relativity is indeed to identify the set of all events with
the set of all time–space points of the four-dimensional time–space continuum
(Sect. 11.8).

In Sects. 11.9 and 11.10 we make the first steps towards a theory that
uses the insights and methodology of the operational axiomatic approach to
quantum mechanics within a scheme which aims at a description in the style
of relativity theory.
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10, 225

52. Aerts, D., Coecke, B., Durt, T., and Valckenborgh, F. (1997): Quantum, classi-
cal and intermediate II: The vanishing vector space structure, Tatra Mt. Math.
Publ. 10, 241

53. Aerts, D., Aerts, S., Durt, T., and Lévêque, O. (1999): Classical and quantum
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12 What Is Probability?

Simon Saunders

What is probability? Physicists, mathematicians, and philosophers have been
engaged with this question since well before the rise of modern physics. But
in quantum mechanics, where probabilities are associated only with measure-
ments, the question strikes to the heart of other foundational problems: what
distinguishes measurements from other physical processes? Or in more for-
mal terms: when are the unitary dynamical equations suspended in favour of
probabilistic ones?

This is the problem of measurement in quantum mechanics. The most
clear-cut solutions to it change the theory: they either add hidden variables
(as in the pilot-wave theory), or they give up the unitary formalism altogether
(as in state-reduction theories). The two strategies are tied to different con-
ceptions of probability: probability as in classical statistical mechanics (as
formulated by Boltzmann, Gibbs and Einstein), and probability as in Brow-
nian motion (with the dynamics given by a stochastic process, as formulated
by Einstein and Smulochowski). The former is sometimes called epistemic
probability, as classical mechanics is deterministic: probabilities arise as a
consequence of incomplete knowledge, or of incomplete description. It is the
latter, stochastic, probability that is usually thought the more fundamental,
as it enters directly into the equations.

Indeterminism encouraged a late-comer to the philosophy of probability,
Popper’s propensity approach [13], in which probabilities are identified with
certain kinds of properties – ‘dispositions’ – of chance setups. But whether
thought of in terms of incomplete descriptions, or as propensities, these kinds
of probability have puzzled philosophers. By way of contrast, probability as
degree of subjective expectation, or subjective weighting, is much clearer: if
that is what probability is one can explain why it obeys the rules that it does
(I shall come back to this point later). Neither the epistemic probabilities of
classical statistical mechanics, nor the objective probabilities of a stochas-
tic dynamics as in Brownian motion, are happily thought of as subjective
expectations. They are grounded, surely, in facts about physical states of af-
fairs, independent of persons altogether. It is true that epistemic probability
is often thought of in terms of ignorance, or incomplete knowledge, but it is
precisely this link with purely subjective considerations that is so puzzling
from the point of view of its role in thermodynamics. Heat transfers, surely,
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take place according to thermodynamical laws, independent of whether any-
one is looking, and of what anyone knows. The point is all the more evident in
the case of stochastic probability. Epistemic as well as stochastic probabilities
are objective rather than subjective quantities. What, then, are the physical
facts that make true some probability statements but not others? What are
we trying to get right about when we make judgements of objective proba-
bilities? It is not informative to say it is that there are chances that are thus
and so; the difficulty, that has long bedevilled the philosophy of probability,
is to say what chances could possibly be.

There are well-known, failed, candidates for the role. The most common-
place looks to the evidence for probability statements, the observed statis-
tical data. Of course, if the question is what chances are, rather than what
we believe them to be, we should consider unobserved data as well; in the
most simple-minded approach, these two are simply identified – specifically,
chances are identified with long-run relative frequencies. But the objections to
doing this are obvious. How long is long enough? In the short run we cannot
expect chance and relative frequencies to line up exactly, whilst the infinite
limit is never actually reached; so what, precisely, are the chances? Presum-
ably a function of the number of trials and the actual relative frequencies;
but what function?

One can prove that for repeated trials the relative frequencies of out-
comes will approximately match the probability of each outcome (assumed
independent), but only in the sense that if p(n, δ) is the probability that they
differ by more than δ > 0, for n trials, then limn→∞ p(n, δ) = 0 (the law
of large numbers). But this is not to identify probabilities with any actual
relative frequencies; so long as n is finite, we still have to do with proba-
bilities [the quantities p(n, δ)]. What this and the various other laws of this
kind show, rather, is that the concept of probability enters into the very rela-
tion between statements of evidence and statements about chance; statistical
evidence bears out a probability claim only to some degree – where ‘some
degree’ is some degree of probability.

Could the latter probability be subjective rather than objective probabil-
ity? It could – but only if we assume that subjective probability, at least in
such cases, agrees with chance: for we calculate the probability for match-
ing statistics with chances by using those same chances. What underwrites
this assumption? This is a question that would arise even if one knew what
chances really were; why should subjective expectations be set equal to ob-
jective probabilities? Put to one side worries about long-run frequencies not
being long enough; why, given that the long-run frequency of some outcome
is thus and so, should we subjectively expect that outcome to that degree on
the very next trial?

We have two questions:

(1) What, physically, is objective probability (chance)?
(2) Why should subjective probability track chance?
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Because of its importance in the philosophy of probability and of rational
action, the principle that subjective probability should track chance – or
the slightly more involved principle that it should, however much additional
information one may have, short of knowledge of what the actual outcome will
be, has been dubbed the principal principle [11]. We are sure this principle
is true, but we are at a loss to say why. Indeed, failing an account of what
chances are, it is hard to see just how the principle could be justified; for it
ought to be facts about physical states of affairs that dictate our subjective
expectations of future contingencies. What are those facts? The two questions
are interdependent.

One can rest on the authority of science. One can say that it is a require-
ment of any theory of rationality that our beliefs should be based on our
best scientific theories. One can take it as an extension of this that we should
tailor our subjective expectations of chance outcomes to whatever our best
theory says are their chances; the principal principle would then be part of
any theory of rational action worthy of the name. Maybe so, but then it will
be an unexplained part. It is also a very large part of the theory of prac-
tical reasoning, perhaps the largest part (the part that deals with physical
contingencies). One would, in the light of our best theories in physics, like
to do better. The challenge is to say what it is about the world that makes
statements of objective probability true, and why, given such states of affairs,
we should act accordingly, with subjective probabilities fixed by the objective
ones.

Questions (1) and (2) are now the most important ones in the philosophy
of probability. It was not always so; Popper, when he proposed to abandon the
link between long-run frequency and chance, wanted an account of probability
that made sense of the single-case and that made no reference to human
knowledge. Worthy aims; but to suppose that the chance of an outcome of
an experiment is a ‘disposition’ of that experiment (and more generally, that
the chance of an event given a certain chance setup is a ‘disposition’ of that
setup) in itself solves very little; for what, physically, are these ‘dispositions’?
Popper was never able to say in terms of categorical physical properties –
properties that are not themselves ‘chancy’ or equally in need of explanation.
Nor was he able to in classical physics. Even in classical games of chance,
where chances are directly related to the symmetries of a chance setup – the
six faces of a die, the two sides of a coin – dynamics comes into it. Throw the
die or the coin just so, and the statistics, the evidence for the chances, can
be anything you like. The dynamics, it seems, can override chance.

This worry would seem to arise in any deterministic theory. It is made
marginally more palatable by putting it in terms of initial conditions rather
than dynamics (that certain initial conditions are ‘typical’). Better still, adopt
the picture of a probability distribution as a measure on an ensemble (usu-
ally infinite) of hypothetical physical systems, a picture in which dynamics is
absent altogether. One can understand its appeal, but only from this narrow
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perspective. What it is about the actual world that makes the probabilities
what they are is never explained. Why we are supposed to have expecta-
tions about the real world because of the values of a measure on a fictitious
ensemble of imaginary worlds is never explained.

(1) is evidently a hard question, but it is at least a physical question;
it is not so clear that (2) is. It would be understandable were physicists to
limit themselves to (1), to be answered by physics as usual (as in saying
what temperature really is, or what solidity really is); (2) can be left to
the philosophers. But we are interested in probability, above all, in quantum
mechanics, and there one is up against the problem of measurement. When it
comes to the problem of measurement physics is not its usual self. As we shall
see, it turns out that the best answer to (1) so far in evidence also provides
an answer to (2) – but at a price.

Our story must proceed in stages. We begin with orthodoxy; next we
consider alternatives to quantum mechanics. From then on we consider prob-
ability from the point of view of decoherence theory and the unadulterated
formalism.

12.1 Orthodoxy

12.1.1 Gleason’s Theorem

Consider a system a with Hilbert space Ha and inner product 〈·, ·〉. For
φ ∈ Ha and any projector P̂ on Ha, the probability µ(φ, P̂ ) is defined by the
rule (the Born rule):

P̂ is measured in φ =⇒ µ(φ, P̂ ) =
〈φ, P̂φ〉
〈φ, φ〉 .

From the right-hand side we see that µ is additive and indeed countably
additive over any partitioning {P̂k} of Ha (any pairwise orthogonal set of
projectors summing to the identity). Looking to the left-hand side, we sup-
pose that each partitioning corresponds to a particular kind of experiment
(one that measures P̂ ). This is where the ‘intent’ of the experiment or the
notion of the ‘observation’ that is made comes in; it has proved to be very
hard to make do with a purely physical specification of the apparatus.

We need a few more definitions in order to state Gleason’s theorem. Given
a density matrix ρ (positive, self-adjoint, and with unit trace) in place of a
vector in Ha, the rule is:

P̂ is measured in ρ =⇒ µ(ρ, P̂ ) = Tr(ρP̂ ) ,

where Tr is the trace, yielding a weighted sum over probabilities as defined
for the pure case. The set of all projectors on H has an algebraic structure
defined by subspace inclusion (a partial ordering). Using it one can define
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the meet (‘and’) and join (‘or’) operations, and under these it is a lattice.
It is not of course a Boolean lattice (for which the meet and join operations
are distributive), but it has (infinitely) many Boolean sublattices, and it is
natural to ask that a probability function on this lattice should be additive on
each Boolean sublattice of the total lattice. This is the condition of Gleason’s
celebrated theorem [8]:

Theorem 1 (Gleason). Let f be any function on projectors on a Hilbert
space H of dimension d > 2 to the unit interval which is additive for any
set of pairwise disjoint projectors on H. Then there exists a unique density
matrix ρ such that for any P̂ on H, f(P̂ ) = Tr(ρP̂ ).

Gleason’s theorem is a derivation of part of the Born rule, but of course
it says nothing about ‘measurements’ or ‘experiments’; nor, on reflection,
is the premise of the theorem so clearly motivated. It is assumed that the
probability for an outcome P̂ belonging to one sublattice is the same when
P̂ is considered as a member of another. The assumption appears innocuous,
but it has non-trivial consequences. For example, let P̂i project onto the
subspace spanned by χi ∈ Ha, i = 1, 2, and let P̂± project onto χ1 ± χ2;
then {P̂1, P̂2} generates one Boolean sublattice and {P̂+, P̂−} another. Yet if
f(P̂1) = f(P̂2) = 0, then by additivity f(P̂1 + P̂2) = f(P̂+ + P̂−) = 0; and
since f is positive, from additivity again it follows that f(P̂+) = f(P̂−) = 0.
So probabilities for one family of projectors constrain those for another, even
though the two do not commute, i.e., [P̂i, P̂±] �= 0. Should constraints like
this be imposed that relate measurements on non-commuting operators? Like
that other celebrated theorem in the foundations of quantum mechanics (von
Neumann’s no-go theorem for hidden variables), the condition of Gleason’s
theorem may be physically unmotivated.

Of course the premise can be taken as the expression of a phenomeno-
logical principle. It is true as goes the statistics of actual experiments; the
statistics of an outcome are the same whatever other quantity (so long as it
is represented by a commuting operator) is measured. Gleason’s theorem, we
may suppose, shows us how a phenomenological principle implies a certain
mathematical representation of probabilities in quantum mechanics, rather
as Kelvin showed how thermodynamical laws imply a certain representation
of temperature; and rather as (although it is a bit of a stretch) Einstein
showed how the relativity principle and the light speed principle imply a
certain representation of geometry.

The comparison with thermodynamics is not an altogether happy one.
It reminds us that statistical data may well be consistent with deterministic
theories. This point was important to Bell [1], who was sympathetic to the
idea of introducing hidden variables in quantum mechanics. He sought to
understand the observed statistics in terms of averages over states ruled out
by Gleason’s theorem, dispersion-free states, in which every projector has
value zero or one. And Bell noticed that they are excluded by a much simpler
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argument than Gleason’s: from the result just proved, and from the fact
that (again from additivity) if f(P̂χ) = 1 and if φ is orthogonal to χ then
f(P̂φ) = 0, it follows immediately that if f(P̂χ) = 1 and f(P̂φ) = 0 then χ
and φ cannot be too close (|χ−φ| > |φ|/2). So there can be no dispersion-free
states, for if dispersion-free f(P̂χ) must change from 1 to 0 as χ is continuously
rotated into φ, so it must change for vectors that are arbitrarily close.

According to Bell what is wrong with Gleason’s additivity assumption, at
the level of the single case, is that it ignores a clear possibility that cannot in
principle be ruled out on experimental grounds. In the single case, the values
assigned to P̂1 and P̂2 may be zero (and that can be discovered experimen-
tally), but one cannot simultaneously measure P̂+ or P̂− so one can draw no
conclusion as to the value assigned to them in that context.

12.1.2 Bohr’s Copenhagen Interpretation

Bell’s reasoning was faithful to Bohr’s principle of complementarity , accord-
ing to which quantum mechanical phenomena cannot be defined indepen-
dently of an experimental context. Given this and the fact that experiments
that measure non-commuting quantities cannot simultaneously be performed,
the way is open for results of experiments to defy classical reasoning alto-
gether; it is possible (this is Bohr’s principle of complementarity) that re-
sults obtained under incompatible experiments cannot be consistently fitted
together according to the classical ideal of explanation. It is this that makes
room for genuine novelty, in quantum experiments, according to Bohr. This
argument was made repeatedly in Bohr’s published writings.

It is therefore embarrassing, to Bohr if not to Bell – because Bohr was
out to interpret quantum mechanics rather than to change it – that by this
reasoning a loophole is opened up in Gleason’s theorem. It may be that every
dynamical quantity has a well-defined value (and every projector has the
value 0 or 1) but that values for commuting quantities not in fact measured
differ from the values that they would have had if they were. Such a theory
is called a contextual hidden variable theory.

The same applies to the Kochen–Specker theorem (in effect a strength-
ening of Bell’s theorem). Bohr’s complementarity opens a way out for
dispersion-free states in that case as well – and a way to understand the
quantum probabilities as describing only the statistics.

Leaving so much open, the orthodoxy as we have it from Bohr offers no
definite account of probability and no justification for the Born rule. And even
if it could be used to underwrite Gleason’s premise, it would give no answer
to (1). For according to Bohr, the state is not something physically real; the
squared modulus of the amplitude is not a categorical physical quantity. For
all that it suggests a link between (1) and (2), it does so at the expense of
(1). The Born rule gives the probabilities for the commuting family of P̂ s
that the experiment is ‘intended’ to measure. In answering (1), one wants to
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dispense with the intentions (for the probabilities we are after are supposed
to be objective rather than subjective). What is it from a purely physical
point of view about an experimental apparatus that dictates that it is one
set of probabilities that is relevant to the outcomes rather than another?
What is the correct choice of sublattice, or equivalently, of basis?

Insisting as he did that the apparatus must be described in classical terms,
Bohr was not entirely at a loss to answer this question. Example by example,
he tried to show that the basis was dictated by some concrete feature of
the apparatus – for example, by whether or not some shutter, screen or
diaphragm was bolted to the laboratory bench. This was supposed to work
in tandem with Bohr’s further thesis that in quantum mechanics one never
really went beyond classical concepts (or one or another of a complementary
set of classical concepts); that there were, in effect, no genuinely quantum
mechanical concepts, or none that could function in explanations in the way
that classical concepts did. But here Bohr was obviously at a disadvantage;
it was part and parcel of complementarity that one could not recover the
classical ideal of explanation when it came to atomic phenomena; it was an a
priori prejudice on Bohr’s part that genuinely quantum concepts could never
be found that would do better than the fragments of classical physics that
Bohr did vouchsafe to us.

Few were prepared to follow Bohr with his analysis of quantum mechan-
ics, and eventually of quantum field theory, in terms of fragments of classi-
cal physics. Even restricted to the analysis of measurements, his systems of
trapdoors, levers and springs seemed baroque; he never was able to estab-
lish any hard-and-fast connection between what was bolted to what and the
observable that was supposed to be measured. The doctrine of incomplete
explanation was unsuccessful in the other areas where Bohr hoped it would
deliver, in biology and psychology. It never offered any insight into the nature
of probability.

12.2 Alternatives to Quantum Mechanics

12.2.1 Pilot-Wave Theory

The alternatives to quantum mechanics are well known. To begin with pilot-
wave theory, which retains the unitary equation for the state and supposes
indeed that quantum mechanics is universal (so there is a wave function for
the universe), one has dispersion-free states, as Bell wanted, but only for
certain dynamical variables (namely configuration space variables, the rela-
tive positions and relative velocities). Correspondingly, one has an additional
equation – the guidance equation – that dictates the allowable trajectories
through each point of configuration space. Consistent with the Bell–Kochen–
Specker theorem, definite values are not attributed to every self-adjoint oper-
ator in quantum mechanics, independently of context. In fact most operators
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are not assigned values at all (for example, only in certain contexts is any com-
ponent of spin assigned a value). And where a component of spin is assigned
a value (in the context of, say, a Stern–Gerlach experiment, for a particular
orientation of the magnetic field), no value for any other component of spin
is defined.

This is to rehabilitate Bohr’s reasoning about experiments (although it
can hardly be said to lend support to his general philosophy). But the more
clear-cut interpretation of the pilot-wave theory is to suppose that the only
real physical quantities are configuration space variables (relative positions
and velocities); that all the rest are artifacts of experiments. Dispersion-free
states for these quantities are not contextual, except in the sense that they
may of course (by the non-locality of the theory) change when the macro-
scopic apparatus is changed. Bell himself seemed to advocate this position [2].

So how does probability get into the picture? Much as it does in classical
statistical mechanics: one probability distribution on configuration space is
favoured (as given by the Born rule) for much the same reason that Liouville
measure on phase space is favoured in classical Hamiltonian mechanics. The
Born rule is said to be the ‘equilibrium’ distribution (‘quantum equilibrium’).
Once in equilibrium, systems cannot be reliably prepared in the dispersion-
free states allowed by the theory (it is this that hides the non-locality). This
smacks of conspiracy; but given equilibrium, the situation is in one respect
better than in classical statistical mechanics. At least we are in a position
to answer (1): chances are determined by certain categorical properties in
the world (the squared norms of the components of the wave function with
respect to the position basis) – assuming, as proponents of the pilot-wave
theory usually do, that the wave function is physically real.

Now note the two disadvantages of this approach. The first is that if this
is the answer to question (1), question (2) seems entirely impenetrable. It
is hard to see why our subjective expectations should be concerned with
these amplitudes squared. The trajectory in phase space can after all be
chosen to give you any statistics you like (leaving the amplitudes completely
unchanged); if it is the trajectory we are concerned with – this is what picks
out all the actual things that happen as opposed to those that do not – why
should something completely independent of the trajectory, the amplitudes,
be of any relevance?

The second turns this objection around. Why, in any case, suppose the
physical probabilities are given by the Born rule? Maybe they float free of
it, as classical probabilities can float free from equilibrium distributions in
statistical mechanics [18]. There, non-equilibrium is not ruled out by fiat as
somehow illegitimate (classically the universe is far from equilibrium). But if
so, and there is no intrinsic connection between physical probabilities and the
amplitudes, what do probabilities correspond to? And we are back to square
one.
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12.2.2 State-Reduction Theory

In pilot-wave theory state reduction is ‘effective’, as components of the state
(‘empty waves’) irrelevant to the guidance equation can be discarded. The
alternative is to build it into the dynamics directly. Here, unlike the case of
pilot-wave theory, a considerable body of new work in physics and mathemat-
ics was needed. The mathematical foundations were laid by Smulochowski,
Wiener and von Neumann in the 1920s. Investigations in quantum optics
in the late 1950s made use of probability measures in quantum mechanics
generalized to sequential sample spaces. They also generalized to continuous
sampling; in the mid-1960s Nelson showed how the Schrödinger equation may
be related to a continuous Markovian stochastic process. By the end of the
1970s, with investigations in open quantum systems theory by Davis and his
collaborators, it was clear how to construct stochastic models to mimic the
behaviour of subsystems subject to arbitrary quantum evolutions. The first
stochastic theory demonstrably equivalent to standard quantum mechanics
across a wide range of applications (all of them, however, non-relativistic)
was proposed in 1986 by Ghirardi, Rimini, and Weber. These theories are
therefore of comparatively recent origins; what do they say about probabil-
ity?

The Schrödinger equation is replaced by a stochastic vector-valued dy-
namical process. In what is perhaps the most elegant example, the continu-
ous state-reduction model [9], this process is assumed to be Markovian and
to take the form:

dψ =
[
Q̂(ψ)dt + R̂(ψ)·dB

]
ψ . (12.1)

Here Q̂ and R̂ are self-adjoint operators on H that depend on the state ψ,
B is a smooth Markov process with components Bk, k = 1, 2, 3, satisfying
(here γ is a new fundamental constant):

dBi(t) = 0 , dBk(t)dBj(t) = δkjγdt .

The over-bar denotes averaging with respect to the underlying probability
space of the Markov process. Each Bk is a map from its index set (time)
to random variables (measurable functions) on this space. A probability dis-
tribution here as always – mathematically – is given by a measure on a σ-
algebra of sets (a Borel space). What this measure corresponds to physically
[question (1)], and why these values of the measure should dictate subjective
probabilities [question (2)], is as obscure as ever.

Is there then no improvement in clarity about probability in this theory?
It would be odd if so; with a stochastic, indeterministic theory, the probabil-
ities are supposed to be in the theory at the ground level. One would think
that there would be a clearer ontological basis to them than in a deterministic
theory. There is this difference: whereas in classical statistical mechanics the
measure is defined over a space of one-time data (Cauchy data), each point of
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which encodes an entire trajectory, in a stochastic theory the measure is de-
fined over the space of trajectories (histories). This, mathematically speaking,
is the whole of the difference between a deterministic and an indeterminis-
tic theory. The customary distinction between epistemic and non-epistemic
interpretations of probability is more rooted in temporal matters than first
appears. One may say of a stochastic theory as much as of a deterministic one
that probabilities are epistemic: they reflect one’s ignorance of which history
is ours. The difference is that in the deterministic case one must be ignorant
of much more, if probabilities are to make any sense: one cannot know even
a single instance of our actual history.

What of the Born rule? It is built into the dynamics, (12.1), in the de-
pendence of the operators Q̂ and R̂ on the state. This is of the form:

R̂(ψ) = Â− 〈ψ, Âψ〉 , Q̂(ψ) = − i
�
Ĥ − R̂·R̂ ,

where Ĥ is the Hamiltonian, and Â is a commuting triple of self-adjoint
operators transforming as a Galilean 3-vector (remember we only have a
non-relativistic stochastic theory). Different choices of the dependence of Q̂

and R̂ on ψ will lead to a stochastic process yielding statistics at variance
with the Born rule. It is therefore clearer in a state-reduction theory than in
pilot-wave theory why the squared amplitudes matter to probabilities, since
they enter directly into the dynamics. There is no longer the possibility that
the dynamics can reliably drive an initial state through a sequence of states
in which the relative frequencies of outcomes is independent of the squared
amplitudes (the Born rule). But everything now hangs on the notion of a
‘reliable’ dynamics; the point is the same as before, that one might as well
speak of a ‘typical’ trajectory (and of probability as a matter of ignorance as
to which trajectory is one’s own). An d, indeed, from a purely mathematical
point of view, one is back to a definition of probability as a measure on history
space. What it is about a particular history (the one that is actually realized)
that makes it true that the probability of a chance outcome has a particular
value is never explained. The link with subjective probabilities is as opaque
as ever.

12.3 Decoherence Theory

Returning to the conventional formalism, there are two important lessons
that we can draw from pilot-wave theory and state-reduction theory. In each
there is a universal state that applies to closed systems; and in each there
is state-reduction – merely ‘effective’ in the former theory, fundamental in
the latter – yielding states which are well-localized in configuration space
(there is a single preferred basis. Even in Bohr’s philosophy localization, or
‘space-time coordinatization’ as he called it, played a fundamental role in any
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measurement process). With this it is enough to recover all extant experi-
mental data (at least in the case of non-relativistic applications of quantum
mechanics). These are the lessons that are taken to heart in decoherence
theory.

Decoherence theory was powered by investigations in open quantum sys-
tems theory just as the theory of quantum stochastic processes was. It has in
common with pilot-wave theory the assumption that the unitary equations
of motion are both fundamental and universal, and it has in common with
state-reduction theories many of the same equations, but derived as effective
equations, concerning only certain dynamical variables and degrees of free-
dom of a system. In any given case of decoherence, probabilities are defined
only for a certain basis or Boolean sublattice of projectors. For systems at or-
dinary temperatures in which massive degrees of freedom are weakly coupled
to large numbers of much lighter ones, the basis for which simple, effective
equations exist for the massive ones is always (approximately) the same: it is
given by projectors onto well-localized regions of the configuration space of
the massive degrees of freedom, at least down to atomic dimensions and time
scales of the order of classical thermal relaxation times. Thereby, so long as
velocities and momenta are obtained by averaging over these time scales, one
obtains coarse-grained trajectories in configuration space and phase space as
well. These are classically perspicuous descriptions of atomic and molecular
processes (with quantum correction terms added).

Decoherence plays a role in all the major schools of foundations in quan-
tum mechanics. It matters to the pilot-wave theory, for it explains just where
and when one can use the reduced state, discarding components of the state
(the ‘empty waves’) for the purposes of actually applying the theory and
computing trajectories. It matters to state-reduction theory, which stochas-
tically degrades every component of the state save one. Degrade them too
soon (before they have decohered) and the predicted probabilities will differ
from those of quantum mechanics. And it matters to the consistent histories
approach. Histories, in this formalism, are ordered sequences of projectors P̂k

(of some given resolution of the identity), interpreted as a sequence of events
in time, as specified by some discrete time variable and the resolution of the
identity used at each time. They are consistent insofar as the probabilities
for each history are non-interfering, meaning the probabilities are the same
whether they are computed assuming the state is reduced at each step (on
sequential ‘measurement’ of each projector P̂k), or assuming it is always the
uncollapsed state. Whether or not a set of histories is consistent depends on
the basis used at each time, the state, and on the unitary dynamics.

Components of the state decohere, in some basis, when there exist effec-
tive, local equations of motion, propagating data along individual branches of
the state (referred to that basis), in approximate agreement with (and usu-
ally adding corrections to) the results of the conventional formalism using
the measurement postulates. It goes without saying that such histories are
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approximately consistent – interference effects between histories could hardly
be significant if there are such effective in-branch equations. In fact consis-
tency is a much weaker requirement. One can define consistent histories for
the simplest imaginable systems, with only a handful of degrees of freedom.
One can represent the motion of a single electron in an inhomogeneous mag-
netic field (the Stern–Gerlach experiment) in accordance with various bases,
each of them consistent; one can even smoothly modify one basis into another
whilst maintaining consistency [6]. Non-interference by itself is not enough
to guarantee that any interesting physics – effective equations – attaches to
these histories. In the language of Gell-Mann and Hartle [7], decoherence
proper concerns a quasiclassical domain and not just a consistent history
space.

Finally, decoherence matters to the Everett interpretation. For this inter-
pretation, like all the theories so far considered, there is a wave function of
the universe, and like the consistent histories theory, the unitary dynamics
alone is fundamental. As in all of these theories there is a preferred basis,
defined by decoherence. We shall say more about the Everett interpretation
shortly.

Defining probability in terms of decoherence, one has more or less the
same Boolean sublattice of projectors throughout – a coarse-graining of pro-
jectors on configuration space (equivalently, on phase space). But with that it
is clear that the premise of Gleason’s theorem need not apply, indeed, that it
has no motivation whatsoever. If probability only makes sense in the context
of decoherence, which only arises for certain dynamical variables and in cer-
tain situations, why suppose that probabilities can be defined for arbitrary
resolutions of the identity, with a non-contextual additivity requirement built
in from the beginning? Why suppose probability has any meaning at all in
regimes in which dynamical decoherence does not exist? But as we shall see,
the Born rule can be derived from alternative premises, that from the point
of view of decoherence theory are very natural.

12.4 A New Derivation of the Born Rule

If probabilities only arise in the context of decoherence – if they are ‘emergent’
– then they will have to have some of the key attributes of decoherence.

• The first is that decoherence typically involves highly degenerate, indeed
infinitely degenerate, projectors (a projector onto any non-zero volume of
configuration space must have infinite-dimensional range). Call this the
degeneracy condition.

• The second is that decoherence is only approximate; there is no precise
boundary below which the probabilities are undefined. Except at very
low temperatures, there are many orders of magnitude over which projec-
tors can be further fine-grained without loss of decoherence. Call this the
stability condition.
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• The third is that the probability rule should be basis-independent; it is the
intrinsic relationship between the universal state and the Boolean lattice
of projectors that matters. Call this the invariance condition.

Let us make this more precise, taking, for the sake of definiteness, for config-
uration space C, a family F (C) of coarse-grainings ∆ of C, with the natural
partial ordering given by the inclusion relation on C. For each ∆ ∈ F (C) one
has an associated Boolean sublattice B∆ (generated by projectors onto the
cells of ∆) of the lattice of projectors on the total Hilbert space H. We are
looking for a probability measure µ : H ×B∆ → [0, 1], ∆ ∈ F (C) on projec-
tors of infinite dimension which is intrinsic to H and stable under variation
of ∆. So we require:

(i) Each P̂ ∈ B∆, ∆ ∈ F (C), P̂ has infinite range (degeneracy).
(ii) For any unitary map U : H → H,

µ∆(ψ, P̂ ) = µ∆(Uψ, UP̂U−1) (invariance) .

(iii) For any P̂ ∈ B∆ ∩B∆′ , ∆′, ∆ ∈ F (C),

µ∆(ψ, P̂ ) = µ∆′(ψ, P̂ ) (stability) .

To these we shall eventually add a continuity assumption. Our claim is
that under these assumptions, for sufficiently large families F (C) of coarse-
grainings of C, the Born rule follows uniquely. The proof in the case of regular
polyhedra at every scale in C [denote F∞(C)] is particularly simple, although
it has the disadvantage that it is unphysical; at sufficiently small scales de-
coherence inevitably fails. We shall later consider whether this idealization is
really troublesome.

Certain results follow independently of any assumptions on F (C). First
a definition. Call a set of orthonormal vectors {ϕk} separating for a set of
disjoint projectors {P̂k}, k = 1, . . . , d, if P̂jϕk = δjkϕk. Then:

Lemma 1. Let {ϕk}, {P̂k}, k = 1, . . . , d, be separating, P̂k ∈ B∆, and let
ψ =

∑d
k=1 ckϕk. If µ satisfies (ii) and ψ′ =

∑d
k=1 |ck|ϕk:

µ∆(ψ, P̂j) = µ∆(ψ′, P̂j) j = 1, . . . , d .

Proof. Let ck = exp(iθk)|ck|, k = 1, . . . , d, and let Uθ : ϕk → exp(−iθk)ϕk,
UθP̂kU−1

θ = P̂k, k = 1, . . . , d (such a Uθ can always be constructed); the
result is immediate from (ii).

Likewise, the overall phase of the vector ψ is irrelevant for the probabilities.
Now for the equiprobable case:

Lemma 2. As in Lemma 1, but let |ck|2 = const. If µ satisfies (i), (ii):

µ∆(ψ, P̂ ) =

{
1/d , P̂ ∈ {P̂k} , k = 1, . . . , d ,

0 , P̂ orthogonal to
∑d

k=1 P̂k .
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Proof. By Lemma 1, we may assume without loss of generality that the cks
are all real: ψ = const.(ϕ1 + · · · + ϕd). First assume d > 1. Define Uπ by
Uπϕk = ϕπ(k), UπP̂kU−1

π = P̂π(k), where π is a permutation [such a Uπ can
always be constructed, since by (i) every projector has the same dimension].
Since Uπψ = ψ, from invariance:

µ∆(ψ, P̂j) = µ∆(ψ, P̂π(j)) .

Choose any P̂k (say k = 1) and define P̂ ′
1 = P̂1+(I−

∑d
j=1 P̂j). Evidently {ϕj}

is separating for P̂ ′
1, P̂2, . . . , P̂d and by the same argument µ∆ is constant on

this set as well. Since P̂ ′
1 + P̂2 + · · ·+ P̂d = I and µ∆ is a probability measure

µ∆(ψ, P̂j) = 1/d, j = 2, . . . , d. The same argument for any other choice of
k yields µ∆(ψ, P̂1) = 1/d; from additivity again, if P̂ is any projector in B∆

orthogonal to all the P̂ks, then µ∆(ψ, P̂ ) = 0. The case d = 1 does strictly
speaking involve an additional (but very weak) assumption: that there are
at least 3 disjoint projectors in B∆ disjoint from P̂1, denoted P̂2, P̂3, P̂4. Let
P̂ ′

4 = 1 −
∑4

k=1 P̂k. Since by assumption P̂kψ = 0, k = 2, 3, 4, µ(P̂2) =
µ(P̂3) = µ(P̂ ′

4), by the result already proved (using a permutation that leaves
P̂1 invariant). Let P̂ ′

2 = P̂2 + P̂3; again P̂ ′
2ψ = P̂ ′

4ψ = 0 so P̂ ′
2 and P̂ ′

4 are
equiprobable. But then P̂ ′

2 and P̂2 are equiprobable, and from additivity
µ(P̂2) = 0. By the same argument µ(P̂3) = µ(P̂ ′

4) = 0, so by additivity
µ(P̂1) = 1.

The case d = 1 is the eigenvector–eigenvalue rule; this result and the method
of proof follow closely the mathematical ideas introduced by Deutsch [5] and
Wallace [20, 22]. The next two lemmas and Theorem 2 differ in certain re-
spects, however. We shall come back to the Deutsch–Wallace theorem shortly.

We need the stability condition to go beyond the equiprobable case. The
proof for F (C) = F∞(C), where C is Rn and H is isomorphic to L2(Rn, dxn),
is as follows. [Note that condition (i), degeneracy, is no longer needed as an
independent assumption.]

Lemma 3. For any ψ ∈ H = L2(Rn, dxn), ∆ ∈ F∞(C), and for any P̂ ∈ B∆

and any integer m, there exists a refinement ∆′ of ∆ and orthogonal projec-
tors P̂j ∈ B∆′ , j = 1, . . . , m, summing to P̂ , such that

∣∣∣P̂jψ
∣∣∣ is constant.

Proof. Let ψ′ = P̂ψ �= 0 (if zero, the proof is immediate). For n = 1,∫ r

−∞ ψ
′
ψ′dx is a non-negative increasing function of r. By the intermediate

value theorem, there are real numbers r1, . . . , rm−1 such that
∫ rj+1

rj
ψ

′
ψ′dx =

const./m, j = 0, . . . , m − 1, r0 = −∞, rm = ∞. Choose as projectors the
characteristic functions χ∆′

j
on R, where ∆′

j = [rj , rj+1]. The generalization
to higher dimensions is obvious.

We may then prove
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Lemma 4. Let µ be a probability measure on B∆ ∈ F∞(C) satisfying (ii)
and (iii). Let {ϕk}, {P̂j}, k = 1, . . . , d be separating. Let

ψ = const.

d∑
k=1

√
mkϕk , mk ∈ Z .

Then:

µ∆(ψ, P̂ ) =

⎧⎨⎩
mj∑d

k=1 mk

, P̂ = P̂j , j = 1, . . . , d ,

0 , P̂ orthogonal to
∑d

k=1 P̂k .

Proof. By Lemma 3, we may choose a fine-graining ∆′ ∈ F∞(C) of ∆ such
that for each k = 1, . . . , d, B∆′ contains mk orthogonal projectors P̂ j

k sum-

ming to P̂k, satisfying
∣∣∣P̂ j

kϕk

∣∣∣ = const. Define ϕj
k = P̂ j

kϕk, then

ϕk =
1
√

mj

mk∑
j=1

ϕj
k and ψ = const.

d∑
k=1

mk∑
j=1

ϕj
k .

By construction {ϕj
k} is separating for {P̂ j

k} (m =
∑d

k=1 mk in all) and
the conditions of Lemma 2 apply; so µ∆(ψ, P̂ j

k ) = 1/m and µ∆(ψ, P̂k) =
µ∆(ψ,

∑mk

j=1 P̂ j
k ) = mk/m.

It is a short step to the general case. We need only assume that µ∆ is con-
tinuous as a map H → [0, 1] (for fixed P̂ ∈ B∆). We thus obtain:

Theorem 2. Let µ be as in Lemma 4 and for each P̂ ∈ B∆ let

µ∆( · , P̂ ) : H → [0, 1]

be continuous in norm. Then for any ψ ∈ H:

µ∆(ψ, P̂ ) =
〈ψ, P̂ψ〉
〈ψ, ψ〉 .

The proof proceeds by constructing, for any ψ, a sequence of vectors in H
of the form assumed in Lemma 4 that is separating for P̂ and I − P̂ that
converges to ψ.

Having stated the theorem, two caveats. The first is that since it assumes
continuity in norm, its mathematical interest is considerably diminished. One
of the remarkable things about Gleason’s theorem is that continuity of the
measure is derived . But from a physical point of view, if probabilities de-
pend at all on vectors in H, they surely vary continuously with them. The
assumption is physically perfectly natural.
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The second is the one already noted, that F∞(C) is unphysical. But we
should be clear why the idealization was needed. It is because, in Lemma 3,
the integers mk arising may be arbitrarily large, so the number of orthogonal
projectors required to sum to each P̂k must be arbitrarily large. That is only
possible if we allow coarse-grainings of C that are arbitrarily small.

Suppose the scale of the coarse-graining is bounded below; what sort
of restriction does this place on these numbers? We are only interested in
exploring the probabilistic structure of the state at the decoherence length
scale and above (for probability, if emergent, has no meaning at smaller length
scales). So we may suppose the state is approximately uniform over some
region ∆k of configuration space, near the threshold of decoherence, at the
length scale 2l; let ∆′ be a refinement of ∆ at the length scale l; how many
disjoint projectors in B∆′ are there, summing to the projector on ∆k? The
answer, for configuration space of dimension n, in the case of hypercubes, is
2n. So even taking the limits of decoherence into account, we can bound real-
valued ratios of probabilities above and below by rational ratios of enormously
large integers – numbers which increase exponentially with the number of
degrees of freedom. Given our general philosophy, that probabilities are only
defined given decoherence and that they should be robust under changes
of coarse-graining, we can legitimately demand that the distribution µ∆(ψ)
should be smooth and not only continuous under variations in ψ, at least
for macroscopic systems of large numbers of degrees of freedom. It should be
effectively constant over variations in ratios of norms of one part in 21022

.
We come back to the dependence of the Born rule on the purpose of the

experiment. Although we do not yet have a clear picture of how to inter-
pret quantum mechanics using decoherence theory, we have an unambiguous
answer to this question. It is ‘design’ and not ‘purpose’; it is a matter of
what, at the sub-decoherence level, as described in pure quantum mechanics,
is reliably correlated with decohering variables. It is only by virtue of these
correlations that probability as emerging with decoherence has any meaning
at the microscopic level.

Here the details are familiar; they follow, in the simplest cases, the von
Neumann treatment of measurement processes. The measurement interac-
tion brings about correlations between projectors in B∆, ∆ ∈ F (C), with
projectors onto eigenspaces of dynamical variables of individual subsystems
a, b, c, . . . , described by (possibly finite-dimensional) subspaces Ha ⊂ H. The
only limit to this process is the ingenuity of the experimenter. In the case
of spin systems of small dimension, it is a plausible claim that in this way
one can experimentally realize correlations between projectors in B∆ and
arbitrary projectors on Ha.

So long as projectors in B∆ and on Ha can be reliably correlated in
this way – depending on the ingenuity of the experimenter – probabilities
assigned to projectors in B∆ can be assigned to projectors on Ha as well.
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That is the whole story about probability at the sub-decoherence level. That
these correlations are non-contextual follows automatically.

12.5 The Everett Interpretation

Probability, if only defined in the context of decoherence, must be given by
the Born rule. But what is the underlying physical picture? We have spo-
ken of quantum mechanical models of the experimental apparatus, applying
quantum mechanics directly to macroscopic systems, but of course decoher-
ence theory does not in itself solve the conceptual problems that follow from
this. Lack of clarity on this score makes it hard to answer the questions we
are concerned with:

1. What is objective probability?
2. Why should subjective expectations track these objective probabilities?

If we want clarity as to questions of what exists, we had better look to a realist
solution to the problem of measurement. If we want probability to arise only
in the context of decoherence, we had better not modify or add new elements
to the unitary formalism. This narrows down the available alternatives. There
are versions of the consistent histories interpretation that may lay claim to
this status, but those in which only a single history is realized necessarily
forsake the approximate character of decoherence (essential to the derivation
of the Born rule that we have given), and require instead some new input to
the theory in order to single out a unique history space (to which the one
and only history actually realized belongs). The idea of environment super-
selection rules and the interpretation of an improper mixture (arrived at by
tracing out environmental degrees of freedom) in terms of ignorance has been
dropped even by its advocates [24,25].

That leaves only the literalist interpretation of the state, in which all
the branches are physically real. With that we are led to many worlds and
to the Everett interpretation: worlds are described by the components of
the universal state referred to the decoherence basis. As such, under the
unitary dynamics, the evolution from a single component of this basis into a
superposition is the evolution of one world into many. Worlds in this sense
divide.1 A chance process is one in which a system is subject to division in
this sense.

12.5.1 Understanding Branching

Our objective here is not to evaluate solutions to the measurement prob-
lem, only the status of probability within them. In Everett’s approach, there
1 They may also, in principle, recombine. It has long been recognized that prob-

ability and the arrow of time are intimately related. This relation leads on to
others [23]; we cannot do justice to them here.
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is now a clear-cut answer to (1): probabilistic events arise only by branch-
ing. Branching, or equivalently, the development of a superposition (referred
to the decoherence basis), is the basis of all objective physical indetermin-
ism (for quantum mechanics is taken to be both universal and fundamental).
The moment of branching is, to use Heisenberg’s language, the point at which
‘potentiality’ becomes ‘actuality’. Chances, as quantities, are squares of the
norms of the associated transition amplitudes – all categorical physical prop-
erties and relations.

Just as important, branching (and therefore this transition) inherits the
approximate character of decoherence. One can put this in terms of vagueness
– that branching is vague, with clear-cut instances but no sharp boundaries.
Vagueness permeates ordinary language, but it is pervasive in scientific the-
ories as well. There is no precise physical definition of tables or chairs, no
more than of cells or molecules. Vagueness is endemic in the chain of reduc-
tion, from ordinary objects to material science, the solid state, and chemistry;
from zoology and anatomy to molecular biology and biochemistry. According
to the Everett interpretation, extracting quasiclassical phenomenology from
the unitary dynamics of quantum mechanics is subject to the same kinds of
equivocation as confront any program for recovering higher-level laws from
more fundamental ones [21]. The methodological issues are all precisely the
same.

If chances arise with branching, but branching depends on the details
of the coarse-graining, then chances can only be stable under variations in
coarse-graining if they satisfy (iii), and hence [with assumptions (i), (ii)] the
Born rule – this is the result just proved. It replaces Gleason’s theorem;
probability is not assumed from the outset to be non-contextual and defined
for any basis; it is not assumed to have any fundamental significance at all.
Probability is ‘emergent’.

One might object that the answer to question (1) is then not so clear-cut
after all; chances arise with branching, but branching, because imprecisely
defined, is hardly being accounted for by any precise properties and relations.
But the same is true of paradigm cases of successful inter-theory reduction.
Reduction is never precise. It is not as though there should be some precise
and unique frequency distribution in electromagnetism that corresponds to
the colour ‘red’, for example. The point about the reduction in the case
of chance is that it be to categorical properties and relations (that are not
themselves indeterminate, borderline, or chancy); it is that the substrate
posited by the reducing theory (the spectrum of waves) should not employ
concepts just as mirky as those we sought to elucidate (the colour red). This is
where Popper went wrong with his account of chance in terms of dispositions.

In fact, in the special case of laboratory experiments (or more generally
of ‘interpreted’ phenomena), a more abstract notion of branching is available
that is reasonably precise; here one defines branches, by sheer stipulation,
in 1 : 1 correspondence with the different numbers assigned to measurement
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outcomes (as equivalence classes of configurations of the experimental display,
that are all taken to represent the same numerical outcome). The number of
branches is the number of possible pointer positions on the dial. Of course
there still remain problems of borderline cases, if for no other reason than
that an experiment is always subject to inefficiencies and is always prone to
malfunction; but at this level, concerning branches that we count as differing
in clear-cut respects, we will be down to a small and finite number. We will
be perfectly able to make sense of their number.

The Everett interpretation does well with (1). It does much better than
the pilot-wave theory, even though the latter has all the resources of the
Everett interpretation – and then some, for it postulates additional structure,
namely a particular trajectory. But that is just where the trouble comes in
(when one introduces the trajectory); the trajectory may be one in which
the statistics are completely different from those predicted by the Born rule.
What does probability mean in such a case?

Some have thought that precisely the same worry arises in the Everett
interpretation. There too there exist ‘anomalous branches’, in which the
recorded statistics do not match the ones predicted by the Born rule. But
there is an important difference. According to Everett, there is nothing about
a branch of this kind that can ensure it will continue to violate the Born rule
(for there is no fact of the matter as to what will happen following on from a
given branch, so long as every branch is given to division), unlike the situa-
tion for anomalous trajectories in pilot-wave theory. Anomalous branches, in
the Everett interpretation, are like statistically anomalous segments, each of
finite length, in an infinitely extendible sequence of random numbers. They
have to exist if the sequence is to be genuinely random, but in no sense is
any given subsequence likely to continue to be anomalous.

What about (2), the connection with subjective expectations? Why should
the amplitudes on branching be our guide for these? But at least it is clear
that on branching we ought to be concerned with weights for branches. For it
is obvious that branching – personal branching, literally dividing in two, say
– will lead to divided expectations, and this will be so even given complete
knowledge of the branching process. The two successors may differ widely,
yet each will with as much right call themselves the same person as before.
In the face of branching there is no 1 : 1 criterion of identity in the forward
direction of time. But if one is to make provision for one’s successors, one
must allocate resources among them. And one can hardly do this without
introducing weightings, implicit or explicit, in one’s reasoning. One cannot
ready oneself for anything and everything.

Philosophers have long disagreed on how, in the presence of branching,
questions of personal identity are to be settled [14]; we should make no pre-
tence that in this matter there is any real consensus. But the one response
that is really damaging to the Everett interpretation has found few advo-
cates: it is that in the face of branching one should expect nothing , oblivion.
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The view is inherently implausible, given that each successor is ex hypothesi
functionally exactly the same as me. Every successor has all of my attributes
and memories; every successor professes himself to be me on the basis of
physical continuity (and on every other physical criterion). No wonder the
view has found few supporters.

12.5.2 Deutsch’s Argument

If not oblivion, then divided expectations. If divided expectations, then di-
vided how, and with what weighting? What preferences ought one to have
for one process of branching (for performing one choice of experiment), with
a given utility in each branch (for each experimental outcome), over another?
But just at this point Deutsch’s argument comes into play.

Deutsch’s strategy, following de Finnetti [4], and before him von Neu-
mann and Morgenstern [19], was to define subjective probabilities (hereafter,
weights) in terms of the preferences of a rational agent among a set of games
g ∈ G each with some set of outcomes Ek, k = 1, . . . , d, with associated
utilities (‘payoffs’) – concrete rewards, cash prizes say, that the agent values
– belonging to some set U . Call P : Ek → U the payoff function for that
agent. If rational, the ordering � on G defined by one’s preferences should
satisfy certain obvious rules (for example, transitivity). The strategy is then
to find a strong enough but still plausible set of rules sufficient to ensure that
for each game g there exists real numbers pk ∈ [0, 1] for each outcome λk,
k = 1, . . . , d, summing to one, and quantities V(g) =

∑d
k=1 pkP(Ek), such

that g � g′ if and only if V(g) ≤ V(g′). If G is big enough, indeed, one would
hope to show that the numbers pk (weights) for the outcomes in each g are
unique. The important point in this is that the pks arrived at in this way will
be independent of an agent’s utilities. A rational agent will act as if attempt-
ing to maximize the expectation value of her utilities, using these weights
as probabilities. It is because of this representation theorem that subjective
probability is in so much better shape than objective probability. If this is
what probability is, one can explain why it obeys the rules that it does.

Deutsch’s remarkable claim is now that the preference ordering of rational
agents, in the face of quantum games, can be so constrained that the weights
defined by these preferences (independent of their actual utilities) agree with
the Born rule.

This result is so surprising that one wants to have an inkling of how it
was obtained. Here we shall follow Wallace [20], who has substantially re-
vised and simplified the argument. A quantum game can be played using
any quantum experiment, simply by agreeing on various payoffs (positive or
negative) on each possible outcome. What is an experiment, according to
Everett? It is a special kind of process, involving stable macroscopic objects,
described by effective equations, such that states can be attributed to sub-
systems (typically molecular), as relative states, that evolve unitarily (i.e., as
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a product state) with respect to the apparatus (this is the state-preparation
process). Following some unitary evolution preserving this product structure,
they evolve into an entanglement with the measurement device. Components
of this eventually include macroscopic degrees of freedom (pointer positions).

From a mathematical point of view one introduces a tensor product in
the Hilbert space for a particular branch, distinguishing some microscopic
subsystem a with Hilbert space Ha from all the rest. Suppose (for simplicity)
that Ha has finite dimensions. The state preparation device produces, in a
reliable way, vectors in a certain subspace of Ha (for simplicity suppose 1-
dimensional, so a particular state φ), in a tensor product with the state of the
rest of the apparatus and its environment. The entanglement subsequently
brought about is with some set of orthogonal states φk ∈ Ha, k = 1, . . . , d, of
a, with decohering states of the apparatus and environment (grouped together
when they give rise to the same pointer reading). The latter reliably leave
behind them a macroscopic trace.

In these models it is useful to introduce numbers λk for the states in Ha

which have some dynamical significance – eigenvalues λk, associated with
eigenstates of some self-adjoint operator X̂ =

∑d
k=1 λkP̂φk

; these replace the
Eks above. The instrument display, meanwhile, registers numbers concretely,
so one has some definite assignment of the λks with these numerals (usually
taken as the identity). The experiment is converted to a game by specifying
a map from these numerals to an agent’s utilities in U , which we can model
directly in terms of the payoff function as a map P : Sp(X̂)→ U . Suppressing
explicit reference to Ha, a quantum game is then given by an ordered triple
〈φ, X̂,P〉.

But adopting this schema, we must recognize the arbitrary elements in it.
It is obviously possible to compensate for a change in labels λk by a change in
the payoff function. This corresponds to a certain arbitrariness in the choice
of self-adjoint operator that the experiment is said to measure: whether it
is X̂ with payoff function P, or f(X̂) with payoff function P◦f−1 [for some
invertible f on Sp(X̂)]. For another arbitrary element, typically the initial
product state involving φ will be subject to a unitary evolution U on Ha

which preserves the product state. Indeed, the preparation device may best
be modelled using a sequence of Hilbert spaces with intertwining operators
U : Ha → Hb. From an Everettian standpoint it is now entirely arbitrary
which of these is taken to be the initial state; the experiment can with as
much right be called a measurement of UX̂U−1 in the state Uφ as of X̂ in
the state φ. There is nothing in the physics to say. It is only the correlations
between vectors in Ha under the unitary dynamics, in a definite time relation
with the event of a pointer reading or payoff in U , that are relevant to an
experiment; precisely which state is called the initial one is immaterial.

We have established two principles. Under our schema for quantum games,
the triples 〈φ, X̂,P〉, many games can be realized by a single physical process.
Since preferences among games should concern the physical world rather than
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the models used to describe it, they should value games as the same if they
can be realized by the same physical process. Let g ∼ g′ if and only if g � g′

and g′ � g. We require for any unitary on Ha and any invertible f on Sp(X̂)
the equivalence principles:

Payoff Equivalence

〈φ, X̂,P〉 ∼ 〈φ, f(X̂),P◦f−1〉 .

Measurement Equivalence

〈φ, X̂,P〉 ∼ 〈Uφ, UX̂U−1,P〉 .

This is a schema well-suited to the Everett interpretation, but it can be moti-
vated on other grounds; it can even be motivated operationally [15]. Deutsch’s
decision-theoretic axioms naturally make no reference to the Everett inter-
pretation. The analysis that follows can, therefore, be largely freed from its
dependence on Everett. But as we shall see, it then fails to have the founda-
tional significance for probability that we are after. We shall come back to
this point in due course.

First Deutsch’s decision-theory axioms. We will prove only one of his re-
sults, and for that we only need two axioms. For simplicity, we assume that
P is linear [so P(x1 +x2) = P(x1)+P(x2) – this is a convention on the labels
λk]. Let fs : R → R be the function fs(x) = x + s, and let −I : R → R be
−I(x) = −x. The first axiom is:

Sure-Thing Principle

Let g = 〈φ, X̂,P〉 , g′ = 〈φ, X̂,P ◦ fs〉 ; then V(g′) = V(g) + P(s) .

I am indifferent between receiving P(s), and then playing game g, and playing
g and then receiving P(s), whatever the outcome. But the latter is g′.

The second axiom is:

Zero-Sum Rule

Let g = 〈φ, X̂,P〉 , g′ = 〈φ, X̂,P ◦ −I〉 ; then V(g) = −V(g′) .

It must be possible for me and my banker to share exactly the same prefer-
ences, and to play the same game: what I am prepared to pay to play g, I pay
to him. The most I am prepared to pay should be the least he is prepared to
accept. But whereas I play g, he plays g′.

The rationale for these principles can also be stated in a way that takes
branching explicitly into account. For the first, if I accept P(s) before playing
g, each of my successors inherits P(s) as well (for the utility too is subject to
branching), and the situation at the end is the same as if I had played g′. For
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the second, if I am prepared to swap with my banker before playing g, being
paid what I would otherwise have paid, each of my successors is swapped
with my banker’s successors, and pays what he would otherwise have been
paid; but the latter is just g′.

With that it follows that for X̂ = x1P̂φ1 + x2P̂φ2 ,

V(φ1 + φ2, X̂,P) =
1
2
P(x1) + P(x2) ,

in accordance with the Born rule. For φ1 + φ2 is invariant under the permu-
tation π of φ1 with φ2, so by payoff equivalence

V(φ1 + φ2, X̂,P) = V(φ1 + φ2, UπX̂U−1
π ,P) .

By measurement equivalence this is V(φ1 + φ2, X̂,P ◦ π−1). Since

π−1 = π = −I ◦ f−x1−x2 ,

by the sure-thing principle and the linearity of P, one obtains

V(φ1 + φ2, X̂,P◦ − I) + P(−x1 − x2) .

By the zero-sum rule and linearity again, this is

V(φ1 + φ2, X̂,P◦ − I) = −V(φ1 + φ2, X̂,P) .

So

V(φ1 + φ2, X̂,P) = −V(φ1 + φ2, X̂,P) + P(x1) + P(x2) .

Deutsch called this his ‘pivotal result’, and for good reason: it is the first time
that any rational basis has been found to tailor one’s subjective probabilities
to the quantum mechanical ones. It is also the first step towards proving a
general principle. Observe that the argument goes through for any φ ∈ H
of the form φ1 + φ2 + cφ3, where P̂1φ3 = P̂2φ3 = 0; observe further that
the antecedent can be stated as the condition that the Born rule for x1P̂φ1

yields the same value as for x2P̂φ2 . So we have proved that for any orthogonal
projectors:

Special Equivalence

If µ(φ, P̂1) = µ(φ, P̂2) , then 〈φ, P̂1,P〉 ∼ 〈φ, P̂2,P〉 . (12.2)

Further axioms of decision theory are required to derive the analogous con-
dition in which the vectors in Ha are different but the P̂ s are the same.
Combining the two, we have [22]:
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General Equivalence

If µ(φ1, P̂1) = µ(φ2, P̂2) , then 〈φ1, P̂1,P〉 ∼ 〈φ2, P̂2,P〉 .

Given the general equivalence condition, the full representation theorem
follows from decision-theoretic axioms that are exceedingly weak – axioms
which, in point of fact, should be acceptable whatever one’s views on what
it is proper to believe in the face of personal division [22]. This full repre-
sentation theorem is then none other than the Principal Principle (as is the
general equivalence rule for equiprobability). But there is an important dif-
ference, that the principle has been derived even under the condition that the
agent has perfect knowledge. So it holds unrestrictedly; there is no room for
the rider to the principle that a rational agent should be indifferent between
playing two games if the objective probabilities for the same utilities are the
same, whatever additional information she has, provided it does not bear on
the actual outcomes of the games (a rider that has in fact proved notoriously
difficult to state with any great precision). There is no need to exclude in-
formation of this sort because, of course, she knows everything there is to
know about the outcomes of the games. As Wallace has stressed [22], an un-
restricted principal principle cannot possibly be accepted, let alone deduced,
on any interpretation of quantum mechanics in which only a single history
is real; for why should one be indifferent between two games, even if they
have the same probability as given by the Born rule, if you know their actual
outcomes as well; will it not depend on what those outcomes are?

12.5.3 Measurement Neutrality

The general equivalence condition can in fact be stated in a way that is
independent of any particular reference to experiments and independent of
the schema we have used. As Wallace has shown, the derivation of the full
representation theorem is all the simpler. Given general equivalence, the rep-
resentation theorem is altogether unproblematic; the decision theory axioms
are so weak that there is no need to consider what it is proper to believe on
personal division. And it may be, on the basis of the Everett interpretation,
that one can argue for the general equivalence condition directly.

But there is something to be said for the argument we have just sketched.
We should hold fast to the belief that on fission, we should not anticipate
oblivion; that, as argued by Parfit, psychological continuity is what matters,
and not a relation with the formal properties of identity [12]. We should look
forward to the same sort of first-person perspective, whatever it is, that we
do in the absence of branching. But then our situation is one of subjective
uncertainty, in the following sense: there is no one perspective that we should
look forward to; we must, in some sense, entertain them all, and we must make
provision for them all (or as many as we can reasonably survey), weighting
them appropriately – just as we do in the face of uncertainty. It is only in
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special situations – for example, when no successor has some outcome – that
one is entitled to ignore that outcome completely, and give it zero weight.

These questions lead off into philosophy. The other sort of criticism that
can be made of the Deutsch–Wallace derivation of the general equivalence
condition (and the special equivalence condition as above) concerns the use
of the schema for quantum games. Is this schematization (subject to payoff
and measurement equivalence) sufficiently detailed? Does it tell you every-
thing you really want to know in the context of decisions about real-life
experiments?

According to Everett, we certainly can characterize quantum games by
triples of the form 〈φ, X̂,P〉 (although that is common ground to a wide
variety of approaches to foundations). Likewise the Everett interpretation
licences payoff equivalence and measurement equivalence (although as men-
tioned, so can other approaches). But why should a rational agent take abso-
lutely nothing else into account in determining her preferences? Might there
not be other features of quantum measurements (or quantum games) that
are worth taking into account?

One can simply deny this possibility. A principle to this effect has been
called measurement neutrality [20]; it is the suspicion that measurement neu-
trality is too strong, or rests on unwarranted or incoherent assumptions as to
what it is right to believe in the face of personal division, that prompts one
to seek a more direct argument for the general equivalence condition. But
better is to seek a direct argument for measurement neutrality.

Why believe in this principle? What more can be said of a measurement
process, according to the Everett interpretation, not captured in the schema,
and what is the rationale for ignoring it? There is of course a vast amount
of information that is not contained in the schema. There is everything else
happening in each branch; there is the world outside the laboratory (assuming
games are played in laboratories), and there are all the detailed goings-on in
the laboratory that were unmentioned in the payoff (including molecular
goings-on that are not in fact detected). But if these are deemed to matter
to her, let them be put into her utilities, and let her prize those games whose
payoff functions include them explicitly. Still, if she is rational, her preferences
will be consistent with the Born rule, along the lines of the argument just
given. The real issue, it is now becoming clear, is that the one thing that she
cannot put into her payoff function is the amplitude; it is not a possible payoff
for her that can be arranged. For there is no dynamical process, according to
Everett, whereby the amplitude of a branch can be measured, and its value
exhibited by a display, or otherwise encoded into the payoff function P. No
unitary evolution can ever achieve that.

This goes a long way to explaining why the amplitudes should play the
part in our mental lives that they do, when it comes to our preferences (ap-
pearing, distinctively, in the weights with which we view outcomes, rather
than as part of the outcomes), and it makes clearer the generality of our



234 Simon Saunders

schema (that it can in principle be applied to arbitrarily complex initial con-
ditions and payoff functions). But it will not do to explain why nothing else
but amplitudes can matter to these weights. It is one thing to care about
details of the apparatus as goes the physical outcomes produced by it – these
should simply be entered into one’s utilities. But what about details of the
apparatus that effect its dynamical functioning, that are not captured in our
simple schema?

There are of course a vast range of physical considerations bearing on
the detailed dynamics of an experiment, but it is reasonable to distinguish
between those that make a difference to the branching structure and those
that do not. We are speaking of a rational agent who may know everything
there is to know: for her, subjective probability, weights, arise in the first
instance on her personal division.

Any dynamics not involving branching concerns the purely deterministic
development of the branch (insofar as branches can ever evolve deterministi-
cally). Experiments modelled in the same way by our schema that differ on
this are likely to have different efficiencies and will differ in their systematic
errors and the ways they are prone to malfunction. There is no reason why
rational agents should regard them as precisely equivalent, but equally, just
because they concern deterministic effective processes, they seem unrelated
to the foundational questions about probability.

It is otherwise with distinctions among experiments that turn on differ-
ences in branching. Again, they break down into two kinds. The first concerns
the precise details whereby an initial entanglement of the microscopic sys-
tem with the measuring apparatus is produced, including the branching that
takes place as progressively larger numbers of degrees of freedom are entan-
gled with it. This takes place over decoherence time scales and is extremely
rapid. The second kind concerns subsequent branching unrelated to the cou-
pling of the apparatus to the microscopic system, usually considered in terms
of statistical fluctuations (and that go on continuously whether or not any
measurement is performed). Of course experiments attempt to control the
latter – this is noise in the signal that is better or worse eliminated – but in
no sense is it possible to model this kind of branching explicitly. It is dealt
with again at the level of effective equations.

We are left with the key arena in which the initial entanglement is estab-
lished and subsequently propagated to include large numbers of degrees of
freedom – the business of measurement theory proper. Is it not reasonable
that a rational agent treat differently experiments that differ in these respects,
even if they are modelled in the same way in our schema of quantum games?
This is the key objection to the derivation of the general equivalence principle
from decision-theoretic principles: the amplitudes (and weights as given by
the Born rule) may be the same, but the branching structure introduced by
the measurement may differ wildly.
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12.5.4 Decoherence, Again

The objection that branch number may have a role in dictating preferences
has to be understood in the right way. It is not that the number of outcomes
counted as distinct when it comes to the payoff function – equivalently, the
number of gradations on the instrument readout – may not matter to our
preferences: that number is already explicit in our schema (in the specification
of the triples 〈φ, X̂,P〉). It is hard-wired in the instrument display. As such it
is available to a rational agent, to be incorporated in her utilities if she will. So
she may favour quantum games with five outcomes rather than four, because
five is her favourite number; or she may dislike outcomes with thirteen in the
display. Anything physically realized in any branch can always be entered into
her utilities, and be looked after at the level of her payoff function, without
compromising her conduct as a rational agent – and therefore in accordance
with the Born rule. She will act irrationally, however, if she believes her liking
for fives is a reason to weight outcomes of games with five in the display as
greater than those without, or to set the weight of any outcome with thirteen
in it to zero. If she does this, she will have to violate the sure-thing principle
or the zero-sum rule in some cases; or to hold the consequences of the Everett
interpretation for payoff equivalence and measurement equivalence to be false.
Exactly the same applies if she assumes that each outcome, corresponding to
each gradation of the display, should have equal weight: she will be convicted
of irrationality or ignorance of quantum mechanics.

The objection is not that. It is that the schema for measurements is leaving
something out of account, not that what it does contain can be acted on
irrationally. It is that for each outcome with each given payoff, the number of
branches all with that outcome has been ignored. Like amplitudes, and unlike
the number of gradations on the instrument display, this is not information
that can be factored into one’s utilities; these are not numbers that can be
reliably realized in a branch by any unitary dynamics. All the more reason,
then, to think that they may be relevant to agent preferences in the way that
amplitudes are so relevant to her weights.

But the answer to this should now be obvious. There is no such thing as
this number . The only significance it has in concrete physical terms is what
is coded up in the number of instrument gradations. It is true that one can
specify such a number theoretically, for a given choice of decoherence basis,
but it has no categorical physical significance; it is not part of what is really
there.

The reason no other number can be defined has already been rehearsed; it
is because decoherence is an imprecise concept. Formally, the number of de-
cohering branches corresponds to the number of decohering projectors – and,
one has to add, “for a particular choice of coarse-graining on configuration
space”. There is no such thing as the finest decohering set of projectors. The
picture, in Everett theory, of the wave function of the universe as an endlessly
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branching tree, breaks up as one goes into the fine detail.2 It is no criticism
of the Deutsch–Wallace argument that it leaves out of account a physically
meaningless quantity. The same applies to the branching that takes place
constantly, independent of the measurement of the microscopic system per
se (‘background noise’); there is no such thing as the number of branches
produced in this way either. It is no part of any principle of rationality to
take note of what is not there.

We have come full circle. A rational agent, who knows everything there is
to know about the physical world, will still have preferences among quantum
games, and she ought to order her preferences consistently. In so doing (for
a sufficiently rich set of games) she will act as if assigning a unique set of
weights to outcomes (independent of the utilities that she assigns to them)
that have to obey the rules of probability theory. If she believes quantum
mechanics to be true, under the Everett interpretation, she will consider
the schema for quantum games a reasonable idealisation of what goes on in
measurements, subject to outcome equivalence and measurement equivalence.
Moreover, she ought to believe in the sure-thing principle and the zero-sum
rule (although here there are weaker principles that will do as well), so she
ought to conclude from the equality of the norms of amplitudes for outcomes
to equality of the weights that she gives to them. She ought to believe in the
special equivalence condition. And so on, to the general condition and the full
representation theorem. But the reason she should consider the schema for
experiments adequate (although she ought to have quibbles over the neglect
of detector inefficiencies and the presence of background noise) is because
her subjective weightings depend on branching, and branching depends on
decoherence; it is because of what the chances are, in physical terms, that
there is no fact of the matter as to the number of branches. And, conversely, it
was exactly because decoherence is a matter of approximation, that if chance
is to emerge with decoherence, then it had better be stable under changes in
coarse-graining – equivalently, under change in branch number – that we were
able to isolate the ratios in modulus squares of the amplitudes (for decohering
projectors) as the only invariant quantities that could play the role of chance.

Subjective and objective probability emerge at the end of the day as
seamlessly interjoined: nothing like this was ever achieved in classical physics.
Philosophically it is unprecedented; it will be of interest to philosophers even
if quantum mechanics turns out to be false, and the Everett interpretation
consigned to physical irrelevance; for the philosophical difficulty with proba-
bility has always been to find any conception of what chances are, in physical
terms, that makes sense of the role that they play in our rational lives.

Still, the Everett interpretation is inherently fantastic; one would like if
possible to free the argument from any dependence on it. Yet we encountered
again and again points on which the Everett interpretation played a critical
2 It is therefore welcome that the Everett interpretation can be formulated purely

in terms of history spaces and the concept of a quasiclassical domain [16].
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role – where the very features of the approach that make it unbelievable were
of special salience. Introduce additional elements, over and above the unitary
dynamics – whether hidden variables or an additional stochastic dynamics
controlling the state – and the symmetries used to derive the proofs for
the individual case have to be broken. But how else to solve the problem of
measurement if there is only a single world? Try to reformulate the derivation
so as to apply to probability distributions over ensembles, and we are back to
the same foundational questions about the latter as in classical theory. And
meanwhile the very conclusions of the argument become obviously untenable:
the unrestricted special equivalence condition that we derived is incoherent if
there is only a single history. The arguments we have considered give no hope
at all that one can derive the principal principle on any basis but Everett’s.

It is ironic that the interpretation of probability in the Everett interpre-
tation has always been thought to be its weakest link. On the contrary, it
seems that it is one of the strongest points in its favour.
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13 On Hamilton–Jacobi Theory
as a Classical Root of Quantum Theory

Jeremy Butterfield

“Don’t worry, young man: in mathematics, none of us really under-
stands any idea – we just get used to them.”
John von Neumann, after explaining (no doubt very quickly!) the method
of characteristics (i.e., Hamilton–Jacobi theory) to a young physicist, as a
way to solve his problem; to which the physicist had replied: “Thank you
very much; but I’m afraid I still don’t understand this method.”

This chapter gives a technically elementary treatment of some aspects of
Hamilton–Jacobi theory, especially in relation to the calculus of variations.
The second half of the paper describes the application to geometric optics, the
optico-mechanical analogy and the transition to quantum mechanics. Finally,
I report recent work of Holland providing a Hamiltonian formulation of the
pilot-wave theory.

13.1 Introduction

In the eighty years since its discovery in the mid-1920s, quantum mechanics
has gone from strength to strength. It has repeatedly been proved successful,
to a high degree of accuracy, in domains of application very different from
its original one. For example, although it was devised for systems of atomic
dimensions (10−8 cm), it has since proven accurate for scales much smaller (cf.
the nuclear radius of ca. 10−12 cm) and vastly larger (cf. superconductivity
and superfluidity, involving scales up to 10−1 cm). Similarly, if we think of
domains of application, not as length (or energy) scales, but as types of ‘stuff’
to which the theory applies. Though quantum mechanics was first devised to
apply to matter (i.e., electrons and protons, the more ‘obvious’ constituents of
atoms), it was soon extended to fields, i.e., the electromagnetic field: indeed,
matter soon became regarded as excitations in associated fields. Similarly,
if we think of domains of application as types of force: though first devised
for electromagnetic forces, quantum mechanics now successfully describes the
weak and strong forces. Indeed, similarly for ‘domains’ understood naively,
as regions of the universe: quantum mechanics has also been applied with
great success to astronomy – the obvious examples being the use of nuclear
physics in theories of stellar structure and evolution, and of particle physics
in theories of the early universe.
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So quantum mechanics has been an amazing success story. I stress this
point at the outset, for two reasons. First, it is, unfortunately, all too easy to
get used to success. Nowadays, both physicists, for whom the various quantum
theories have become everyday professional tools, and the wider scientifically
literate public, can easily lose their sense of wonder at this immense success.
So it is worth remembering how contingent, and surprising, it is.

My second reason is more specific to work in the foundations and/or phi-
losophy of quantum theory. This work focusses on the interpretative prob-
lems, especially the measurement problem, that still confront quantum me-
chanics, despite its immense empirical success: hence this volume’s question:
Quo vadis, quantum mechanics? Of course, I endorse that focus: it is crucially
important to address these problems. But in addressing them, it is salutary to
recall this success, as an intellectual backdrop. Indeed, not only is it salutary:
it might also be heuristically useful – though of course, different researchers,
with their different intellectual temperaments, will take this success to give
different heuristic clues about ‘Quo vadis, quantum mechanics?’. For exam-
ple, an Everettian philosopher such as Saunders (see Chap. 12) may see the
success of the established quantum theoretic formalisms as supporting their
position: certainly, heterodox quantum theories such as dynamical models
of wave function collapse face an enormous task in recovering that success.
On the other hand, a theoretical physicist who is searching for a successor
to quantum mechanics – whether to solve these interpretative problems or
to reconcile the quantum with general relativity’s treatment of gravitation,
or both (such as ’t Hooft, see Chap. 8) – may scrutinize the details of this
empirical success for clues about how present-day quantum mechanics might
be an effective, i.e., phenomenological, theory. As ’t Hooft wittily puts it: we
can ask, not ‘Quo vadis, quantum mechanics?’, but rather ‘Unde venis?’ –
‘Where do you come from?’

This paper will likewise ask ‘Unde venis, quantum mechanics?’: though
I humbly admit that I will interpret this question in a retrospective and
expository sense, rather than in ’t Hooft’s wonderfully forward-looking and
creative sense. To be specific, I propose to discuss Hamilton–Jacobi theory
as a classical root of quantum mechanics.

One part of this story is well known to physicists and philosophers and
historians of physics. Namely, Hamilton–Jacobi theory as a method of inte-
grating Hamilton’s equations (using Jacobi’s theorem, action–angle variables,
etc.), and the use made of this integration theory in nineteenth century ce-
lestial mechanics, and thereby in the old quantum theory.

There is however another part of this story that seems much less known by
this community, viz., Hamilton–Jacobi theory understood from the perspec-
tive of the calculus of variations (as worked out by such masters as Hilbert
and Carathéodory), and how this understanding motivates de Broglie’s and
Schrödinger’s proposal to extend Hamilton’s optico-mechanical analogy, thus
creating quantum mechanics (as wave mechanics). So I propose to present
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this part of the story: or rather, since this part could fill a book – selected
pieces of it! [My (2003, 2003a) discuss some other, philosophical, aspects.]
At the end of the paper, I shall also briefly return to ‘Quo vadis?’, i.e., to
a current interest in the foundations of quantum theory, viz., the pilot-wave
theory – on which Hamilton–Jacobi theory casts some light. But I begin, in
the next section, with a more detailed prospectus.

13.1.1 Introducing Hamilton–Jacobi Theory

Hamilton–Jacobi theory is a general theory, rich in analytic and geometric
ideas, that unifies three apparently disparate topics: systems of first order
ordinary differential equations, first order partial differential equations, and
the calculus of variations. Roughly speaking, Hamilton–Jacobi theory shows
that the following problems are equivalent:

• (ODE): solving a canonical system of first order ordinary differential equa-
tions (2n equations for 2n functions of a parameter t in which all variables’
first derivatives are given by partial derivatives of one and the same func-
tion); e.g., Hamilton’s equations in Hamiltonian mechanics.

• (PDE): solving a first order partial differential equation in which the
unknown function does not occur explicitly, e.g., the Hamilton–Jacobi
equation in mechanics.

• (CV): solving the ‘basic’ calculus of variations problem of finding n func-
tions q1, . . . , qn of a parameter t that make stationary a line integral of
the form

∫
L(qi, q̇i, t)dt, where the dot denotes differentiation with respect

to t, e.g., Hamilton’s principle in Lagrangian mechanics, or Fermat’s prin-
ciple in geometric optics.

A bit more precisely: elementary Lagrangian and Hamiltonian mechanics
show (ODE) and (CV) to be equivalent for the case of fixed endpoints.
Hamilton–Jacobi theory extends this equivalence by considering, not a single
solution of the canonical equations (a single line integral) but a whole field of
solutions, i.e., line integrals along all the curves of a space-filling congruence
(so that the endpoints lie on hypersurfaces transverse to the congruence).
The initial conditions of a problem then become the specification of a func-
tion’s values on such a hypersurface, instead of an initial configuration and
momentum (or an initial and final configuration): hence the occurrence of
partial differential equations.

The main aim of this paper is to explain (in an elementary way) these
equivalences and some related results. This explanation will later (Sects. 13.7
and 13.8) provide us with a perspective on the optico-mechanical analogy and
quantum mechanics (specifically, wave mechanics). But there is also a peda-
gogic rationale for presenting these results. Most physicists learn Hamilton–
Jacobi theory only as part of analytical mechanics; and almost all the me-
chanics textbooks present, in addition to the equivalence of (ODE) and (CV)
for fixed endpoints, only the use of Hamilton–Jacobi theory as a method of
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integrating Hamilton’s equations – indeed rendering the integration trivial.
The central result here is Jacobi’s theorem: that given a complete integral of
the Hamilton–Jacobi equation (typically found by separation of variables),
one can obtain solutions of Hamilton’s equations just by differentiation. This
is a remarkable result, which lies at the centre of a beautiful geometric theory
of the integration of first order partial differential equations, a theory which
reduces the integration problem to that of integrating a suitable system of
ordinary differential equations (the characteristic equations). But almost all
the mechanics textbooks present Jacobi’s theorem using just canonical trans-
formation theory. As a result, they do not describe this general integration
theory – and more generally, they do not show the role of geometric ideas,
nor of the calculus of variations with variable endpoints.

This textbook tradition is of course understandable. Textbooks must em-
phasise problem-solving; and the use of a complete integral of the Hamilton–
Jacobi equation to solve Hamilton’s equations is crucially important, for sev-
eral reasons. As to problem-solving, it is ‘the most powerful method known
for exact integration, and many problems which were solved by Jacobi cannot
be solved by other means’ (Arnold 1989, p. 261). Besides, it is conceptually
important. It leads on to action–angle variables, which are central both to
classical mechanics (e.g., in the Liouville–Arnold theorem, and in perturba-
tion theory) and the old quantum theory.

But though understandable, this tradition is also regrettable. For the
result is that most physicists understand well only the equivalence of (ODE)
and (CV) for fixed endpoints, and a part of the equivalence of (PDE) and
(ODE) – the part expressed by Jacobi’s theorem. Besides, they understand
these matters only in the context of mechanics. This is a pity, for two reasons.

First, it is worth stressing that all these equivalences and other related
results are purely mathematical and so entirely general. Second, the equiv-
alences and results that get omitted from most mechanics textbooks are at
least as rich as those included; in particular, in their use of geometric ideas
and one might add, in their use of optical ideas. Indeed, Hamilton developed
his work in mechanics in deliberate analogy with his previous work in optics.1

And as we shall see, both Fermat’s principle (roughly, that a light ray travels
the path that takes least time) and Huygens’s principle (roughly, that given a
wave front, a later wave front is the envelope of spherical waves spreading from
the points of the given wave front) stand at the centre of Hamilton–Jacobi
theory. They involve each of the above mathematical problems, in optical
guise, viz., the description of light in terms of rays [exemplifying (ODE)],
in terms of wavefronts [exemplifying (PDE)], and by means of variational
principles [exemplifying (CV)].

1 For a glimpse of the history, which I will not discuss, see for example: for me-
chanics, Dugas (1988), Whittaker (1959); for optics, Whittaker (1952), Buchwald
(1989); and for mathematics: Kline (1970, Chap. 30).
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Accordingly, I propose to expound some of these equivalences and con-
nections, as mathematics (Sects. 13.2–13.6). Then I will illustrate them with
geometric optics and the optico-mechanical analogy (Sects. 13.7 and 13.8).

To be both brief and elementary, this exposition must be very selective.
In particular, I will say nothing about:

(i) weak solutions,
(ii) the use of phase space,
(iii) issues about the global existence of solutions, including focussing and

caustics.2

Another omitted topic lies closer to our concerns. I will not present the theory
surrounding Jacobi’s theorem, i.e., Hamilton–Jacobi theory as an integration
theory for first order partial differential equations. For though I have com-
plained that this is absent from the mechanics books, it is in some books on
mathematical methods.3

Instead, I will adopt an approach that emphasises the calculus of varia-
tions. The main ideas here seem to be due to Carathéodory and Hilbert. Here
again, I must be selective. I will simply pick out within this approach, one
line of thought, found for example in the first half of Rund (1966). (Rund
proves some results which I will only state, and he cites the original papers.)
Though selective, this exposition will give a good sense of the triangle of
equivalences between (ODE), (PDE) and (CV). Indeed, we will get such a
sense already by the end of Sect. 13.3. Sections 13.4 to 13.6 will add to this
a discussion of three topics, each leading to the next. They are, respectively,
Hilbert’s independent integral, treating the integration variable of the varia-
tional problem on the same footing as the other coordinates, and integration
theory.

Thereafter, Sects. 13.7 et seq. return us to physics. Section 13.7 discusses
geometric optics, and Sect. 13.8 the optico-mechanical analogy and wave
mechanics. Section 13.8 also leads us back to the foundations of quantum
2 A few pedagogic references: for (i) Logan (1994, Chap. 3), Stakgold (1967); for

(ii), Arnold (1989, Chaps. 8 and 9), Littlejohn (1992), Taylor (1996, Sect. 1.15);
for (iii), Arnold (1989, Appendices 11 and 16), Benton (1977), Taylor (1996,
Sect. 6.7). Of these topics, (ii) and (iii) are closest to this paper’s interests in ge-
ometry, and in the transition between classical and quantum mechanics. For (ii),
i.e., Hamilton–Jacobi theory in phase space, beautifully illustrates symplectic ge-
ometry; and (ii) and (iii) are crucial in both quantization theory and semiclassical
mechanics.

3 Especially Courant and Hilbert (1962, Sects. II.1–8); see also, e.g., Webster (1950,
Chap. 2) and John (1971, Chap. 1). In order to be elementary, I will also avoid
all use of modern differential geometry, including even the distinction between
contravariant and covariant indices. Though modern geometry has transformed
our understanding of differential equations and the calculus of variations (and
the sciences of mechanics and optics), I shall only need the intuitive geometry
familiar from multivariable calculus.
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mechanics, which I take up briefly in (the last) Sect. 13.9. Here I will call
attention to the role of Hamilton–Jacobi theory in the pilot-wave theory of
de Broglie and Bohm, and more specifically, advertise Holland’s recent work
(2001, 2001a), which provides a Hamiltonian formulation of the pilot-wave
theory.

13.2 From the Calculus of Variations
to the Hamilton–Jacobi Equation

13.2.1 The Calculus of Variations Reviewed

We begin by briefly reviewing the simplest problem of the calculus of vari-
ations, with which we will be concerned throughout the paper. This is the
variational problem (in a notation suggestive of mechanics)

δI := δI[qi] = δ
∫ t1

t0

L(qi, q̇i, t) dt = 0 , i = 1, . . . , n , (13.1)

where [ ] indicates that I is a functional, the dot denotes differentiation with
respect to t, and L is to be a C2 (twice continuously differentiable) function
in all 2n + 1 arguments. L is the Lagrangian or fundamental function, and∫

Ldt is the fundamental integral . We will discuss this only locally, i.e., we
will consider a fixed simply-connected region G of an (n+1)-dimensional real
space R

n+1, on which there are coordinates (q1, . . . , qn, t) =: (qi, t) =: (q, t).
The singling out of a coordinate t (called the parameter of the prob-

lem), to give a parametric representation of curves q(t) := qi(t), is partly a
matter of notational clarity. But it is of course suggestive of the application
to mechanics, where t is time, q represents the system’s configuration and
(qi, t)-space is often called extended configuration space or event space. Be-
sides, the singling out of t reflects the fact that, though it is usual to assume
that L (and so the fundamental integral) is invariant under arbitrary trans-
formations (with non-vanishing Jacobian) of the qi, we do not require the
fundamental integral to be independent of the choice of t. Indeed we shall see
(at the end of this section and in Sect. 13.5) that allowing this dependence
is necessary for making Legendre transformations.4

A necessary condition for I to be stationary at the C2 curve q(t) := qi(t),
i.e., for δI = 0 in comparison with other C2 curves that

• share with q(t) the endpoints q(t0), q(t1),

4 Of course, the calculus of variations, and Hamilton–Jacobi theory, can be de-
veloped on the assumption that the fundamental integral is to be parameter-
independent – if it could not be, so much the worse for relativistic theories! But
the details, in particular of how to set up a canonical formalism, are different
from what follows. For these details, see for example Rund (1966, Chap. 3).
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• are close to q(t) in both value and derivative throughout t0 < t < t1,

is that q(t) satisfies for t0 < t < t1 the n second-order Euler–Lagrange (also
known as Euler, or as Lagrange!) equations

d
dt

Lq̇i − Lqi = 0 , i = 1, . . . , n . (13.2)

A curve satisfying these equations is called an extremal .
We will not need to linger on the usual derivation of these equations: we

will later see them derived without using a single fixed pair of endpoints.
Nor need we linger on several related matters taken up in the calculus of
variations, such as: the distinction between stationarity and extrema (i.e.,
maxima or minima), in particular the conditions for a curve to be an ex-
tremum not just a stationary point (e.g., conditions concerning the second
variation of the fundamental integral, or Weierstrass’ excess function); the
distinction between weak and strong stationary points and extrema; and the
use of weaker assumptions about the smoothness of the solution and com-
parison curves.

But it is important to consider the canonical form of our variational
problem. In physics, the most frequent example of this is the expression of
Hamilton’s principle within Hamiltonian mechanics, i.e., Hamilton’s princi-
ple with the integrand a function of both q s and p s, which are to be varied
independently. But the correspondence between the Lagrangian form of the
variational problem (above) and the canonical form is general (purely math-
ematical).

Thus, under certain conditions the variational problem (13.1) has an
equivalent form, whose Euler–Lagrange equations are 2n first order equa-
tions. To this end, we introduce ‘momenta’

pi := Lq̇i , (13.3)

and (recalling that L is C2) we assume that the Hessian with respect to the
q̇ s does not vanish in the domain G considered, i.e., the determinant∣∣Lq̇iq̇j

∣∣ �= 0 , (13.4)

so that (13.3) can be solved for the q̇i as functions of qi, pi, t.
Then the equations

pi = Lq̇i , q̇i = Hpi , L(qi, q̇i, t) + H(qi, pi, t) =
∑

i

q̇ipi , (13.5)

represent a Legendre transformation and its inverse, where, in the third equa-
tion, q̇i are understood as functions of qi, pi, t according to the inversion of
(13.3). The function H(qi, pi, t) is called the Legendre (or Hamiltonian) func-
tion of the variational problem, and the q s and p s are called canonically
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conjugate. It follows that H is C2 in all its arguments, Ht = −Lt, and
|Lq̇iq̇j

| = |Hpipj
|−1. Besides, any H(qi, pi, t) that is C2 in all its arguments

and has a non-vanishing Hessian with respect to the p s, |Hpipj | �= 0, is the
Legendre function of a C2 Lagrangian L given in terms of H by (13.5).

Applying this Legendre transformation, the Euler–Lagrange equations
(13.2) go over to the canonical system

q̇i = Hpi
, ṗi = −Hqi

(= Lqi
) . (13.6)

A curve satisfying these equations is also called an extremal. These are the
Euler–Lagrange equations of a variational problem equivalent to the original
one, in which both q s and p s are varied independently, namely the problem

δ
∫ [∑

i

q̇ipi −H(qi, pi, t)

]
dt = 0 . (13.7)

For more details about (13.3)–(13.7), see for example Arnold (1989, Sects.
3.14, 9.45.C), Courant and Hilbert (1953, Sect. IV.9.3; 1962, Sect. I.6) and
Lanczos (1986, Sects. VI.1–4).

The requirement of a non-vanishing Hessian, (13.4), or equivalently
|Hpipj

| �= 0, is a crucial assumption. Note in particular these two conse-
quences:

• The Hamiltonian cannot vanish identically. This follows because, if we
differentiate H =

∑
q̇ipi−L = 0 with respect to q̇i, we get

∑
i Lq̇iq̇j

q̇i = 0,
and this contradicts (13.4).

• L cannot be homogeneous of the first degree in the q̇i. That is, we cannot
have L(qi, λq̇i, t) = λL(qi, q̇i, t). We shall see in Sect. 13.5 that this means
the fundamental integral cannot be parameter-independent.

13.2.2 Hypersurfaces and Congruences

We consider a family of hypersurfaces in our region G of R
n+1,

S(qi, t) = σ , (13.8)

with σ ∈ R the parameter labelling the family, and S a C2 function (in all
n + 1 arguments). We assume this family covers the region G simply , in the
sense that through each point of G there passes a unique hypersurface in the
family.

Let C be a curve

qi = qi(t) (13.9)

of class C2, that lies in G and intersects each hypersurface in the family (13.8)
just once, but is nowhere tangent to a hypersurface. Then σ is a function of
t along C, with
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∆ :=
dσ

dt
=
∑

i

∂S

∂qi
q̇i +

∂S

∂t
. (13.10)

By construction ∆ �= 0. We will assume that the Lagrangian L does not
vanish along C. By a suitable labelling of the family of surfaces, we can
secure

∆ > 0 or < 0 according as L > 0 or < 0 (13.11)

for the line element (qi, q̇i, t) of C. Then a tangential displacement along C
from P := (qi, t) to Q := (qi+dqi, t+dt), i.e., a displacement with components
(dqi, dt) = (q̇i, 1)dt, induces an increment dσ in σ, and an increment dI =
L(qi, q̇i, t) dt in I =

∫
Ldt.

To connect this family of hypersurfaces with the calculus of variations,
we now seek values of q̇i at P such that the direction at P of the curve C,
(q̇i, 1) dt, makes dI/dσ a minimum with dσ fixed. A necessary condition is
that

∂

∂q̇i

(
dI

dσ

)
= 0 , i = 1, . . . , n . (13.12)

But dI/dσ = L/∆ and ∆ �= 0, so that (13.12) reads

∂L

∂q̇i
− L

∆

∂∆

∂q̇i
= 0 . (13.13)

That is, using ∂∆/∂q̇i = ∂S/∂qi from (13.10),

∂L

∂q̇i
=

L

∆

∂S

∂qi
. (13.14)

A curve C, or its tangent vector (q̇i, 1), that satisfies (13.14), is said to be
in the direction of the geodesic gradient determined by the family of surfaces
(13.8).

As it stands, this condition (13.14) can at best yield minima of dI/dσ,
while we are interested in minima of dI/dt. But there is a further condition
on the family of surfaces (13.8) that implies that curves obeying (13.14) are
solutions of the variational problem; or rather, to be precise, extremals.

This condition has two equivalent forms, the first geometric in spirit, the
second analytic. They are:

(a) The quantity L/∆ is constant on each surface, i.e., there is some real
function φ such that

L

∆
= φ(σ) , (13.15)

where we are to take the directional arguments in L to refer to the
geodesic gradient.
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(b) S solves the Hamilton–Jacobi equation.

It is straightforward to show that (a) implies that we can reparametrize the
family of surfaces in such a way that L = ∆ throughout the region G. That
is to say, given (a), the family can be reparametrized so that function φ is
the constant function 1: φ(σ) = 1. Proof: Any monotonic function ψ gives
a reparametrization of the family, ψ(S) = ψ(σ), with ∆̄ defined on analogy
with ∆ by ∆̄ := dψ(σ)/dt = ψ′(σ)∆. Choosing ψ(σ) :=

∫ σ

σ0
φ(s) ds (σ0 some

constant) yields ψ′(σ) = φ(σ) so that

L

∆̄
≡ L

ψ′(σ)∆
≡ φ(σ)

ψ′(σ)
= 1 .

So to show (a) and (b) equivalent, we will show that:

(i) given (a) in this special form, i.e., given L = ∆, S solves the Hamilton–
Jacobi equation,

and conversely,

(ii) S solving the Hamilton–Jacobi equation implies that L = ∆.

But it will be clearest, before proving this equivalence, to present two conse-
quences of L = ∆, and introduce some terminology.

Firstly, L = ∆ implies that the geodesic gradient (13.14) is now given by

∂L

∂q̇i
= pi =

∂S

∂qi
, (13.16)

where the first equation uses (13.3). Recall now our assumption that the
determinant |Lq̇iq̇j | �= 0, so that (13.3) can be solved in G for the q̇i as
functions of qi, pi, t, viz., q̇i = qi(qi, pi, t). This now reads as

q̇i = q̇i(qi, ∂S/∂qi, t) , (13.17)

where the right-hand side is a function of (qi, t) alone (since S is) and has
continuous first order derivatives. Then the elementary existence theorem for
solutions of first order ordinary differential equations implies that (13.17)
defines an n-parameter family of curves in the region G, such that each point
in G has a unique curve pass through it, and each curve is a solution of
(13.17) in the sense that the components of its tangent vectors obey (13.17).
This family of curves is called the congruence K belonging to the family of
surfaces (13.8).

Secondly, L = ∆ implies that the increment dI in the fundamental integral
I =

∫
Ldt, in passing from a point P1 on the surface S(qi, t) = σ1, to an

adjacent surface S = σ1 + dσ, along a curve of the congruence belonging to
the family, obeys

dI = ∆dt = dσ . (13.18)
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Integrating this result along members of the congruence, we find that the
integral along a curve of the congruence, from any point P1 on the surface
S(qi, t) = σ1 to that point P2 on the surface S(qi, t) = σ2 that lies on the
same curve of the congruence, is the same for whatever point P1 we choose.
That is, ∫ P2

P1

Ldt = σ2 − σ1 . (13.19)

Clearly, the converse also holds: if the fundamental integral taken along curves
of the congruence has the same value for two hypersurfaces, however we
choose the endpoints P1, P2 lying in the hypersurfaces, then L = ∆. So a
family of surfaces satisfying the condition that L = ∆ is called geodesically
equidistant with respect to the Lagrangian L. [Courant and Hilbert (1962,
Sect. II.9.2) say ‘geodetic’, not ‘geodesic’, which has the advantage of avoiding
possibly confusing connotations of metric and/or connection with the word
‘geodesic’.]

Carathéodory called a family of geodesically equidistant hypersurfaces,
together with the congruence belonging to it, the complete figure (of the vari-
ational problem). As we shall see, the name is apt, since the complete figure is
central to Hamilton–Jacobi theory. Also, the congruence is called transversal
to the surfaces of the family. The analytical expression of transversality is
that for a displacement (δqi, δt) tangential to a hypersurface in the family,
δS = 0. That is,

∂S

∂qi
δqi +

∂S

∂t
δt = 0 . (13.20)

We turn to showing (i) above, viz., that L = ∆ implies that S solves the
Hamilton–Jacobi equation.

Proof. Equation (13.10) yields

L(qi, q̇i, t) = ∆ :=
dσ

dt
=
∑

i

∂S

∂qi
q̇i +

∂S

∂t
, (13.21)

where q̇i refers to the direction of the geodesic gradient, (13.17), i.e., q̇i =
q̇i(qi, ∂S/∂qi, t). This yields

−∂S

∂t
= −L

(
qi, q̇i(qi, ∂S/∂qi, t), t

)
+
∑

i

∂S

∂qi
q̇i(qi, ∂S/∂qi, t) . (13.22)

However, (13.5) implies that the right-hand side is the Hamiltonian function,
but with pi replaced by ∂S/∂qi in accordance with (13.16). Thus we have

∂S

∂t
+ H(qi, ∂S/∂qi, t) = 0 , (13.23)
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which is the Hamilton–Jacobi equation.

This equation is also a sufficient condition for a family of surfaces being
geodesically equidistant. That is, (ii) above: S being a C2 solution in G of
the Hamilton–Jacobi equation implies that L = ∆, i.e., that the hypersurfaces
of constant S are geodesically equidistant.

Proof. Given such a solution S(qi, t), let us define an assignment to each
point of G (sometimes called a field) by

pi ≡ pi(qi, t) :=
∂S

∂qi
. (13.24)

By (13.4), this determines a field q̇i as in (13.17), and hence a congruence.
Then for the given solution S, a given member C of the congruence, and
two given parameter values σ1, σ2, we form the fundamental integral along
C between the points P1 and P2 where C intersects the hypersurfaces corre-
sponding to the parameter values σ1, σ2. Using the Legendre transformation
(13.5) and the fact that S solves the Hamilton–Jacobi equation (13.23), we
obtain ∫ P2

P1

Ldt = −
∫ P2

P1

[
H(qi, ∂S/∂qi, t)−

∑
i

piq̇i

]
dt

=
∫ P2

P1

(
∂S

∂t
dt +

∑
i

∂S

∂qi
dqi

)

=
∫ P2

P1

dS = σ2 − σ1 . (13.25)

To sum up, a family of hypersurfaces S = σ is geodesically equidistant
with respect to the Lagrangian L iff S is a solution of the Hamilton–Jacobi
equation whose Hamiltonian H corresponds by the Legendre transformation
to L. And if this holds, the transversality condition5 (13.20) can be written
[using (13.23) and (13.24)] as

piδqi −H(qi, pi, t)δt = 0 . (13.26)

13.3 Canonical and Euler–Lagrange Equations.
Fields of Extremals

We now study the properties of a congruence K belonging to a family of
geodesically equidistant surfaces. We first show that any curve of such a con-
5 Transversality can also be defined, without any use of a family of hypersurfaces,

or even a function S, in terms of the fundamental integral being stationary as an
endpoint of the integral varies on a given single surface [see, e.g., Courant and
Hilbert (1953, Sect. IV.5.2)].
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gruence obeys the canonical and Euler–Lagrange equations. Then we develop
the following ideas: a field qi, pi in the region G; and a field belonging to a
family of (not necessarily geodesically equidistant) hypersurfaces. Finally we
characterize those fields belonging to geodesically equidistant hypersurfaces.

13.3.1 Canonical and Euler–Lagrange Equations

The family (13.8) defines an assignment of pi := ∂S/∂qi to each point of a
member C of the congruence K. If we differentiate the definition of p, i.e.,
(13.24) with respect to t along C, then differentiate the Hamilton–Jacobi
equation (13.23), and use the fact [from (13.6)] that q̇i = ∂H/∂pi, we can
eliminate the second derivatives of S that arise in the differentiations, and
get

ṗi = −∂H

∂qi
. (13.27)

To this, we can adjoin q̇i = ∂H/∂pi, so as to get 2n first order ordinary
differential equations obeyed by members of K, viz.,

ṗi = −∂H

∂qi
, q̇i =

∂H

∂pi
. (13.28)

Note that according to this deduction, these two groups of equations have dif-
ferent statuses, despite their symmetric appearance. ṗi = −∂H/∂qi depends
on K belonging to a family of geodesically equidistant surfaces (i.e., on the
Hamilton–Jacobi equation), whereas q̇i = ∂H/∂pi are identities derived from
the theory of the Legendre transformation [see (13.6)]. But this difference is
not peculiar to the use of hypersurfaces in our deduction. The same difference
occurs in derivations of these equations in the calculus of variations with fixed
endpoints: in the most familiar case, in Lagrangian mechanics, i.e., without
use of the canonical integral [see, e.g., Lanczos (1986, pp. 166–7)].

From the canonical equations we can deduce the (Lagrangian form of the)
Euler–Lagrange equations. We substitute pi = ∂L/∂q̇i in the left-hand side,
and ∂H/∂qi = −∂L/∂qi in the right-hand side, of the first of (13.28), to get

d
dt

∂L

∂q̇i
− ∂L

∂qi
= 0 . (13.29)

13.3.2 Fields

To discuss fields, we need first to consider parametric representations of an
arbitrary smooth congruence of curves covering our region G simply. That is,
we consider a congruence represented by n equations giving qi as C2 functions
of n parameters and t,
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qi = qi(uα, t) , i = 1, . . . , n , (13.30)

where each set of n uα = (u1, . . . , un) labels a unique curve in the congruence.
Thus there is a one-to-one correspondence (qi, t) ↔ (uα, t) in appropriate
domains of the variables, with non-vanishing Jacobian∣∣∣∣ ∂qi

∂uα

∣∣∣∣ �= 0 . (13.31)

Such a congruence determines tangent vectors (q̇i, 1) at each (qi, t); and
thereby also values of the Lagrangian L

(
qi(uα, t), q̇i(uα, t), t

)
and of the mo-

mentum

pi = pi(uα, t) =
∂L

∂q̇i
. (13.32)

Conversely, a set of 2n C2 functions qi, pi of (uα, t) as in (13.30) and (13.32),
with the q s and p s related by pi = ∂L/∂q̇i, determines a set of tangent
vectors, and so a congruence. Such a set of 2n functions is called a field;
and if all the curves of the congruence are extremals (i.e., solutions of the
Euler–Lagrange equations), it is called a field of extremals.

We say a field belongs to a (not necessarily geodesically equidistant) family
of hypersurfaces given by (13.8) iff throughout the region G (13.16) and
(13.30) are together satisfied, i.e., iff we have

pi =
∂

∂qi
S(qi, t) =

∂

∂qi
S
(
qi(uα, t), t

)
. (13.33)

One can show that a field belongs to a family of hypersurfaces iff for all
indices α, β = 1, . . . , n, the Lagrange brackets of the parameters of the field,
i.e.,

[uα, uβ ] :=
∑

i

(
∂qi

∂uα

∂pi

∂uβ
− ∂qi

∂uβ

∂pi

∂uα

)
, (13.34)

vanish identically.6

We say that a field qi = qi(uα, t), pi = pi(uα, t) is canonical if the qi, pi

satisfy (13.28). Now we will show that if a canonical field belongs to a fam-
ily of hypersurfaces (13.8), then the members of the family are geodesically
equidistant.

Proof. Differentiating (13.33) with respect to t along a member of the con-
gruence, and substituting on the left-hand side from the first of (13.28), we
get
6 See Rund (1966, pp. 28–30). Warning: the role of Lagrange brackets in this theory

is sometimes omitted even in excellent accounts, e.g., Courant and Hilbert (1962,
Sect. II.9.4).
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−∂H

∂qi
=

∂2S

∂qi∂qj
q̇j +

∂2S

∂qi∂t
. (13.35)

By the second of (13.28), this is

∂2S

∂qi∂t
+

∂H

∂qi
+

∂H

∂pj

∂2S

∂qi∂qj
= 0 , (13.36)

which is

∂

∂qi

[
∂S

∂t
+ H(qj , ∂S/∂qj , t)

]
= 0 . (13.37)

This can be integrated immediately to give

∂S

∂t
+ H(qj , ∂S/∂qj , t) = f(t) , (13.38)

with f an arbitrary function of t only. Now we argue (in the usual way, for the
calculus of variations) that this function can be absorbed in H. For suppose
the given Lagrangian were replaced by L̃ = L+ f(t). The path-independence
of the integral

∫
f(t) dt implies that L and L̃ give equivalent variational

problems, i.e., the same curves give stationary values for both
∫

Ldt and∫
L̃dt. Besides, the definition (13.3) of pi and the canonical equations (13.6)

are unaffected, the only change in our formalism being that H is replaced
by H̃ = H − f(t). So assuming that L is replaced by L̃ means that (13.38)
reduces to the Hamilton–Jacobi equation (13.23). The result now follows from
result (ii) at the end of Sect. 13.2.2.

This result is a kind of converse of our deduction of (13.28). We can sum
up this situation by saying that the canonical equations characterize any field
belonging to a family of geodesically equidistant hypersurfaces.

Finally, we should note an alternative to our order of exposition. We
assumed at the outset a family of hypersurfaces and then discussed an asso-
ciated congruence and field. But one can instead begin with a single arbitrary
surface; then define the notion of an extremal being transverse to the sur-
face (in terms of the fundamental integral being stationary as an endpoint
varies on the surface – see footnote 5); then define a field of such transverse
extremals; and finally define other surfaces, geodesically equidistant to the
given one, as surfaces S = constant, where S(qi, t) is defined to be the value
of the fundamental integral taken along a transverse extremal from the given
surface (S = 0) to the point (qi, t). This alternative order of exposition is
adopted by Courant and Hilbert (1962, Sect. II.9.2-5), and (more briefly) by
Born and Wolf (1999, Appendix I.2-4). It has the mild advantage over ours of
clearly displaying the choice of an arbitrary initial surface; which accords with
the solution of a partial differential equation involving an arbitrary function
just as the solution of an ordinary differential equation involves an arbitrary
constant or constants. It will also come up again in Sects. 13.6 and 13.7.
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13.4 Hilbert’s Independent Integral

A canonical field belonging to a geodesically equidistant family of hyper-
surfaces defines a line integral which is independent of its path of integra-
tion. This integral, named after its discoverer Hilbert, is important not only
in Hamilton–Jacobi theory, but also in aspects of the calculus of variations
which we do not discuss, e.g., the study of conditions for the fundamental
integral to take extreme values.

Suppose we are given a geodesically equidistant family of hypersurfaces
covering region G simply. Consider two arbitrary points P1, P2 ∈ G lying on
hypersurfaces S = σ1, S = σ2, respectively; and consider an arbitrary C1

curve C : qi = qi(t) lying in G and joining P1 and P2. We will write the
components of the tangent vector (dqi/dt, 1) of C as (q′

i, 1); for we continue
to use the dot notation for differentiation along the geodesic gradient of the
field belonging to S. Now consider the integral along C of dS, so that the
integral is trivially path-independent:

J :=
∫ P2

P1

dS(qi, t) = σ2 − σ1 =
∫ P2

P1

(
∂S

∂qi
q′
i +

∂S

∂t

)
dt . (13.39)

We can apply pi = ∂S/∂qi and the Hamilton–Jacobi equation to the first
and second terms of the integrand, respectively, to get a path-independent
integral

J =
∫ P2

P1

[
piq

′
i −H(qi, pi, t)

]
dt = σ2 − σ1 . (13.40)

We can also Legendre transform to eliminate the pi in favour of q̇i, getting

J =
∫ P2

P1

[
L(qi, q̇i, t) +

∂L

∂q̇i
(q′

i − q̇i)
]

dt = σ2 − σ1 . (13.41)

It is in this form that J is usually called the Hilbert integral .
A field

qi = qi(uα, t) , pi = pi(uα, t) , (13.42)

assumed to belong to a family of hypersurfaces in the sense of (13.33), is called
a Mayer field if substituting qi, pi in the integral in (13.40) yields an integral
that is path-independent. So we have seen that a canonical field is a Mayer
field. One can show that the converse holds, i.e., any Mayer field is canonical
(Rund 1966, p. 33). So we have the result: a Mayer field is a canonical field
belonging to a family of geodesically equidistant hypersurfaces. (It can also
be shown that every extremal curve can be imbedded in a Mayer field.)

Combining this with the results of Sect. 13.3, we also have: the field (13.42)
is a Mayer field iff the Lagrange brackets [uα, uβ ] vanish and the field obeys
the canonical equations (13.28).
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13.5 The Parameter as an Additional q-Coordinate

As we said at the start of Sect. 13.2.1, our theory has depended from the
outset on the choice of t [see the fundamental integral (13.1)]. Indeed, we saw
at the end of Sect. 13.2.1 that the non-vanishing Hessian (13.4) implies that
L cannot be homogeneous of the first degree in the q̇i, i.e., we cannot have
for all λ ∈ R, L(qi, λq̇i, t) = λL(qi, q̇i, t). And we shall shortly see that this
implies that the fundamental integral cannot be parameter-independent.

But for some aspects of the theory, especially the discussion of Hamilton–
Jacobi theory as an integration theory for first order partial differential equa-
tions in the next section, it is both possible and useful to treat t as a coor-
dinate on a par with the q s. So in this section, we describe such a treatment
and the gain in symmetry it secures.

To have some consistency with our previous notation, we first consider a
Lagrangian L(qα, q̇α, t) with n− 1 coordinates qα, a parameter t and deriva-
tives q̇α = dqα/dt. So note that, in this section, Greek indices run from 1 to
n− 1. So the fundamental integral along a curve C : qα = qα(t) in a suitable
region G of R

n joining points P1, P2 with parameters t1, t2 is

I =
∫ t2

t1

L(qα, q̇α, t) dt . (13.43)

Now we introduce a real C1 function τ(t) which is such that dτ/dt > 0
for all values of t under consideration, but is otherwise arbitrary. We write
derivatives with respect to τ using dashes, so that

q′
α = q̇α

(
dt

dτ

)
. (13.44)

So with τ1 := τ(t1), τ2 := τ(t2), we can write (13.43) as

I =
∫ τ2

τ1

L

(
qα, q′

α

dτ

dt
, t

)
dt

dτ
dτ . (13.45)

If we now write qn for t, so that we can write the coordinates on R
n as

qi = (qα, t) = (qα, qn) , i = 1, . . . , n and
dt

dτ
= q′

n �= 0 , (13.46)

then we can write (13.45) as

I =
∫ τ2

τ1

L∗(qi, q
′
i) dτ , (13.47)

where we have defined

L∗(qi, q
′
i) := L∗(qα, t, q′

α, q′
n) := L

(
qα,

q′
α

q′
n

, t

)
. (13.48)
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We stress that the values of the integrals (13.43) and (13.47) are equal. But
the latter is by construction parameter-independent, since the choice of τ
is essentially arbitrary. Also L∗ is by construction positively homogeneous
of the first degree in the q′

i = (q′
α, q′

n) – i.e., for all positive numbers λ,
L∗(qi, λq′

i) = λL(qi, q
′
i) – irrespective of the form of the given Lagrangian L.

In fact one can easily show that these two features are equivalent.
For the purposes of the next section, we now express the canonical equa-

tions of our variational problem, (13.43) or (13.47), in the new notation.
But note that the total differentiation on the left-hand sides of the canonical
equations will still be differentiation with respect to the original parameter
t, hence indicated by a dot.

Writing the conjugate momenta of L∗ as p∗ for the moment, we have

p∗
α =

∂L∗

∂q′
α

=
∂L

∂q̇α

1
q′
n

q′
n = pα , (13.49)

so that these are identical with the original conjugate momenta. We therefore
drop the ∗ in p∗

α. So the canonical equations for the indices 1, . . . , n − 1
are given, with the original Hamiltonian (Legendre) function H(qα, pα, t) as
defined in (13.5), by

q̇α =
∂H

∂pα
, ṗα = − ∂H

∂qα
. (13.50)

On the other hand, for the new pn, we have

pn :=
∂L∗

∂q′
n

= L−
∑
α

∂L

∂q̇α

q′
α

q′
n

= L−
∑
α

pαq̇α . (13.51)

Comparing with the definition (13.5) of the Hamiltonian (Legendre) function,
this is

pn + H(qα, pα, t) = 0 . (13.52)

So differentiating pn with respect to the original parameter t along an ex-
tremal gives

ṗn :=
dp

dt
= −dH

dt
= −∂H

∂t
= −∂H

∂qn
, (13.53)

which fits well with (13.50). (Here −dH/dt = −∂H/∂t follows as usual from
the canonical equations, i.e., from the Poisson bracket of H with itself vanish-
ing identically.) But note that we also have q̇n := dt/dt = 1 �= ∂H/∂pn = −1.

However, we can use the Hamilton–Jacobi equation to overcome this
last ‘wrinkle’, i.e., to get a greater degree of symmetry. We can write the
Hamilton–Jacobi equation of our variational problem (13.43) as

Φ

(
qi,

∂S

∂qi

)
= H

(
qα,

∂S

∂qα
, qn

)
+

∂S

∂qn
= 0 , (13.54)
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where Φ is defined as a function of 2n variables by

Φ(qi, pi) := H(qα, pα, qn) + pn . (13.55)

Now if the pα in (13.55) refer to a field of extremals belonging to a solution
S(qα, qn) of the Hamilton–Jacobi equation, so that pα = ∂S/∂qα, then by
(13.52) and (13.54), we also have pn = ∂S/∂qn. Besides, (13.55) implies
immediately

∂Φ

∂qi
=

∂H

∂qi
,

∂Φ

∂pα
=

∂H

∂pα
,

∂Φ

∂pn
= 1 (= q̇n ≡ dt/dt) . (13.56)

It follows that we can write the canonical equations (13.50), together with
the relations for qn, pn, in a completely symmetrical way in terms of Φ as

q̇i =
∂Φ

∂pi
, ṗi = − ∂Φ

∂qi
, (13.57)

where, note again, the dot denotes differentiation with respect to t.

13.6 Integrating First Order Partial Differential
Equations

As mentioned in Sect. 13.1, we will not expound the usual approach (using
Jacobi’s theorem) to Hamilton–Jacobi theory as an integration theory for first
order partial differential equations.7 Instead, we will in this section briefly
introduce another approach which exploits the results and concepts of the
previous sections (for more details, see Rund, 1966, Sect. 2.8).

We will consider a partial differential equation of the form

Φ

(
qi,

∂S

∂qi

)
= 0 , i = 1, . . . , n , with

∂Φ

∂pi
�= 0 for at least one i ,

(13.58)

and Φ of class C2 in all 2n arguments. One of the i for which ∂Φ/∂pi �= 0 may
be identified with t, but this is not necessary: as in the previous section, our
discussion can treat all coordinates of R

n on an equal footing. We shall also
assume that (as suggested by the Hamilton–Jacobi equation) the unknown
function S does not occur explicitly in the equation; but this is not really
a restriction, since one can show that the general case, i.e., an equation in
which S occurs, can be reduced to the form of (13.58) by introducing an
additional independent variable.
7 For an exposition, see the references in footnote 4. As to the history, Whit-

taker (1959, pp. 264, 316) reports that this theory was developed by Pfaff and
Cauchy in 1815–1819, using earlier results by Lagrange and Monge; i.e., well
before Hamilton’s and Jacobi’s work!
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So the initial value problem is to find a function S(qi) (qi ∈ G) that satis-
fies (13.58) and that assumes prescribed values on a given (n−1)-dimensional
C2 surface, V say, in G. We will indicate how to construct such a function
explicitly by using a congruence of ‘canonical’ curves which solve a canonical
system of ordinary differential equations. (So we reduce the integration of the
partial differential equation to the problem of integrating ordinary differen-
tial equations.) This canonical system of equations will be suggested by our
previous discussion; and the strategy of the construction will be to adjust the
congruence of curves from an initial rather arbitrary congruence, to one that
provides a solution to (13.58).8

Thus our previous discussion (especially Sects. 13.3 and 13.5) suggests
that we should consider the system of 2n ordinary differential equations,
with a new parameter s :

q̇i :=
dqi

ds
=

∂Φ(qj , pj)
∂pi

, ṗi :=
dpi

ds
= −∂Φ(qj , pj)

∂qi
. (13.59)

These are called the characteristic equations of (13.58). A curve qi = qi(s)
of R

n that satisfies them is called a characteristic curve of (13.58). It will
be an extremal of a problem in the calculus of variations if (13.58) is the
Hamilton–Jacobi equation of such a problem. Our approach to integrating
(13.58) applies to these characteristic equations theorems about the existence
and uniqueness of solutions of ordinary differential equations, so as to secure
the existence and uniqueness of solutions to (13.58).

Let us consider an (n− 1)-parameter congruence of characteristic curves,
with parameters u1, . . . , un−1, so that we write

qi = qi(s, uα) , pi = pi(s, uα) . (13.60)

Since Φ is C2, it follows from (13.59) that the functions (13.60) are C2 in
s. We will also assume that these functions are C2 in the uα, and that this
congruence covers the region G simply, with

∂(q1, q2, . . . , qn)
∂(s, u1, . . . , un−1)

�= 0 , (13.61)

so that we can invert the first set of (13.60) for (s, uα), getting

s = s(qi) , uα = uα(qi) . (13.62)

We shall also write (in G)

φ(s, uα) := Φ
(
qi(s, uβ), pi(s, uβ)

)
. (13.63)

One can now show:
8 We remark at the outset that since – as in previous sections – we work in a

‘configuration space’, not its twice-dimensional ‘phase space’, there are many
‘canonical congruences’, rather than a unique one, so that this sort of adjustment
is possible.
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• φ of (13.63) is an integral of the characteristic equations (13.59), i.e.,
dφ/ds = 0,

• the Lagrange brackets [uα, s] and [uα, uβ ] are constant along any member
of the congruence defined by (13.59).

We now make some assumptions about the relation of our characteristic con-
gruence to the given surface V . We will assume that through each point of
V there passes a unique member of the congruence, and that the congruence
is nowhere tangent to V . Thus each point in V is assigned n − 1 parameter
values uα and a value of s; so we can write s on V as a C2 function of uα,
the parameters of the unique curve through the point. Let us write this as
s = σ(uα), so that the functions ai(uα) defined by

ai(uα) := qi

(
σ(uα), uα

)
(13.64)

are also C2. Finally we will suppose that we seek a solution of (13.58) which
takes the values c(uα) on V , c prescribed C2 functions.

That completes the assumptions needed for the construction of a (local)
solution of (13.58) (and the proof of its uniqueness). We end this section by
briefly describing the first steps of the construction.

The theory of first order ordinary differential equations implies that the
congruence of characteristic curves for (13.59) is determined if the values of
qi and pi are prescribed on V . The initial values of qi are of course to be given
by the ai of (13.64). But as to the initial values of the pi, i.e., bi defined by

bi(uα) := pi

(
σ(uα), uα

)
, (13.65)

we have some choice. The strategy of the construction is, roughly speaking,
to define a function S on G, in such a way that when we adjust the bi so that
pi = ∂S/∂qi, S becomes a solution of (13.58) in G, possessing the required
properties.

We now define a function z = z(s, uα) on G in terms of V , the values
c(uα) prescribed on V and the given congruence; in effect, this z will be the
desired S, once the bi are suitably adjusted. For each point P ∈ G, with its n
parameter values (s, uα), the s-value of the intersection with V of the unique
curve through P is given by s = σ(uα). We define the value of z at P by

z(s, uα) := c(uα) +
∫ s

τ=σ(uα)

∑
i

[
pi(τ, uα)

∂Φ
(
qi(τ, uα), pi(τ, uα)

)
∂pi

]
dτ ,

(13.66)

where the integration is to be taken along the curve through P , from its point
of intersection with V , to P .

We will not go further into the construction of the desired S, except to
make two remarks:

• Note that (13.66) implies in particular that z(σ(uα), uα) = c(uα).
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• Differentiating (13.66) with respect to s and using the first set of (13.59)
yields

ż ≡ ∂z

∂s
=
∑

i

pi
∂Φ

∂pi
=
∑

i

piq̇i . (13.67)

This is analogous to the relation Ṡ =
∑

i piq̇i between a scalar function,
such as a solution S of the Hamilton–Jacobi equation and the field qi, pi

belonging to it, i.e., the field such that pi = ∂S/∂qi [see (13.33)]. Indeed,
if we use (13.62) to define a function S on G by

S(qi) := z
(
s(qi), uα(qi)

)
, (13.68)

then one can show (again, we omit the details!) that:
– we can adjust the bi so as to make pi = ∂S/∂qi hold,
– this adjustment makes S, as defined by (13.68) [and so (13.66)], a

solution of (13.58) with the required properties.

13.7 The Characteristic Function and Geometric Optics

In this section, we follow in Hamilton’s (1833, 1834!) footsteps. We introduce
the Hamilton–Jacobi equation via the characteristic function (as do most
mechanics textbooks), and then apply these ideas to geometric optics – so
our discussion will (at last!) make contact with physics. The main point will
be that the correspondence in our formalism between canonical extremals
and geodesically equidistant hypersurfaces underpins the fact that both the
corpuscular and wave conceptions of light can account for the phenomena,
viz., reflection and refraction, described by geometric optics.9

We assume that our region G ⊂ R
n+1 is sufficiently small that between

any two points P1 = (q1i, t1), P2 = (q2i, t2) there is a unique extremal curve
C. To avoid double subscripts, we will in this section sometimes suppress the
i, writing P1 = (q1, t1), P2 = (q2, t2), etc. Then the value of the fundamental
integral along C is a well-defined function of the coordinates of the endpoints,
which we call the characteristic function and write as

S(q1, t1; q2, t2) =
∫ t2

t1

Ldt =
∫ t2

t1

(∑
i

piq̇i −H

)
dt =

∫ ∑
i

pidqi −Hdt ,

(13.69)

9 This is an example of what philosophers call under-determination of theory by
data. The escape from this sort of quandary is of course the consideration of
other phenomena: in this case, the nineteenth-century study of diffraction and
interference, which led to the rise of wave optics – see the start of Sect. 13.8.
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where the integral is understood as taken along the unique extremal C be-
tween the endpoints, and we have used (13.5).

Making arbitrary small displacements (δq1, δt1), (δq2, δt2) at P1, P2 re-
spectively, and using the fact that the integral is taken along an extremal,
we get for the variation in S

δS := S(q1 + δq1, t1 + δt1; q2 + δq2, t2 + δt2)− S(q1, t1; q2, t2)

=
∂S

∂t1
δt1 +

∂S

∂t2
δt2 +

∑
i

∂S

∂q1i
δq1i +

∑
i

∂S

∂q2i
δq2i

=

[∑
i

piδqi −H(qj , pj , t)δt

]t2

t1

. (13.70)

Since the displacements are independent, we can identify each of the coeffi-
cients on the two sides of the last equation in (13.70), getting

∂S

∂t2
= −[H(qi, pi, t)]t=t2 ,

∂S

∂q2i
= [pi]t=t2 , (13.71)

∂S

∂t1
= [H(qi, pi, t)]t=t1 ,

∂S

∂q1i
= −[pi]t=t1 , (13.72)

in which the pi refer to the extremal C at P1 and P2.
These equations are remarkable, since they enable us, if we know the

function S(q1, t1, q2, t2) to determine all the extremals (in mechanical terms,
all the possible motions of the system) – without solving any differential
equations! For suppose we are given the initial conditions (q1, p1, t1), (i.e.,
in mechanical terms, the configuration and canonical momenta at time t1),
and also the function S. The n equations ∂S/∂q1 = −p1 in (13.72) relate
the n + 1 quantities (q2, t2) to the given constants q1, p1, t1. So in principle,
we can solve these equations by a purely algebraic process, to get q2 as a
function of t2 and the constants q1, p1, t1. Finally, we can get p2 from the n
equations p2 = ∂S/∂q2 in (13.71). So indeed the extremals are found without
performing integrations, i.e., just by differentiation and elimination: a very
remarkable technique.10

Substituting the second set of equations of (13.71) in the first yields

∂S

∂t2
+ H(q2, ∂S/∂q2, t2) = 0 . (13.73)

10 As Hamilton of course realized. He writes, in the impersonal style of the day:
“Mr Hamilton’s function S . . . must not be confounded with that so beautifully
conceived by Lagrange for the more simple and elegant expression of the known
differential equations [i.e., L]. Lagrange’s function states, Mr Hamilton’s function
would solve the problem. The one serves to form the differential equations of
motion, the other would give their integrals” (1834, p. 514).
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So the characteristic function S(q1, t1; q2, t2) considered as a function of the
n + 1 arguments (q2, t2) = (q2i, t2) [i.e., with (q1, t1) fixed] satisfies the
Hamilton–Jacobi equation.

Assuming that this solution S is C2, it follows from result (ii) of Sect.
13.2.2 that S defines a family of geodesically equidistant hypersurfaces,
namely the geodesic hyperspheres (for short, geodesic spheres) with centre
P1 = (q1, t1). Thus the sphere with radius R is given by the equation

S(q1, t1; q2, t2) = R , (13.74)

with (q1, t1) considered fixed. So every point P2 on this sphere is connected to
the fixed centre P1 = (q1, t1) by a unique extremal along which the fundamen-
tal integral has value R. These extremals cut the spheres (13.74) transversally.

These geodesic spheres about the various points P1 are special families
of hypersurfaces. For by taking envelopes of these spheres, we can build up
successive members of an arbitrary family of geodesically equidistant hyper-
surfaces. This is the basic idea of Huygens’ principle in geometric optics.
Though Huygens first stated this idea as part of his wave theory of light, it
can be stated entirely generally. Indeed, there is a rich theory here. We will
not enter details,11 but just state the main idea.

Thus consider some arbitrary solution S(qi, t) of the Hamilton–Jacobi
equation

∂S

∂t
+ H(qi, ∂S/∂qi, t) = 0 , (13.75)

and thereby the canonical field (congruence) K belonging to it, for which
pi = ∂S/∂qi. Let h1, h2 be two hypersurfaces corresponding to values σ1, σ2
of S, i.e., (qi, t) ∈ hj , (j = 1, 2) iff S(qi, t) = σj . Let P1 be in h1, and let the
canonical extremal C through P1 intersect h2 in P2. Then we already know
from (13.19) that the fundamental integral along C is∫ P2

P1

Ldt = σ2 − σ1 , (13.76)

so that P2 is in the geodesic sphere centred on P1 with radius σ2−σ1. Huygens’
principle states that more is true: h2 is the envelope of the set of geodesic
spheres of radius σ2 − σ1 with centres on the hypersurface h1.

As a final task for this section, we briefly illustrate our formalism with an-
other topic in geometric optics: namely, Fermat’s least time principle, which
states (roughly speaking) that a light ray between spatial points P1 and P2
travels by the path that makes stationary the time taken. This illustration
has two motivations. First, together with the discussion in the next section, it
11 For details, see Baker and Copson (1950) and Herzberger (1958). In optics, the

Hamilton–Jacobi equation is often called the eikonal equation.
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will bring out the optico-mechanical analogy – and so prompt the transition
to wave mechanics.

Second, it illustrates how our formalism allows t to be a coordinate like
the qi, even though it is singled out as the integration variable (see Sect. 13.5).
In fact, there are subtleties here. For if one expresses Fermat’s principle using
time as the integration variable, one is led to an integrand that is in general,
e.g., for isotropic media, homogeneous of degree 1 in the velocities q̇i; and as
noted in the second remark right at the end of Sect. 13.2.1, this conflicts with
our requirement of a non-vanishing Hessian (13.4), i.e., with our construction
of a canonical formalism. So illustrating our formalism with Fermat’s prin-
ciple in fact depends on using a spatial coordinate as integration variable
(parameter along the light path). As we will see in a moment, this gives
an integrand which is in general, even for isotropic media, not homogeneous
of degree 1 in the velocities, so that we can apply the theory of Sect. 13.2
onwards.

So now our preferred coordinate t will be (not time, as it will be in mechan-
ics) but one of just three spatial coordinates (q1, q2, t) for ordinary Euclidean
space. In fact, applications of geometric optics, e.g., to optical instruments
which typically have an axis of symmetry, often suggest a natural choice of
the coordinate t.

At a point P = (q1, q2, t) in an optical medium, a direction is given by
direction ratios (q̇1, q̇2, ṫ) = (q̇1, q̇2, 1). (So note that subscripts 1 and 2 now
refer to the first and second of three spatial axes ‘at a single time’, and not
to initial and final configurations.) The speed of a ray of light through P in
this direction will in general depend on both position and direction, i.e., on
the five variables (qi, q̇i, t), i = 1, 2, and so the speed is denoted by v(qi, q̇i, t).
If c is the speed of light in vacuo, the refractive index is defined by

n(qi, q̇i, t) := c/v(qi, q̇i, t) . (13.77)

If n is independent of the directional arguments q̇i (respectively, positional
arguments qi, t), the medium is called isotropic (respectively, homogeneous).

Now let the curve C : qi = qi(t) represent the path of a light ray between
two points P1, P2 with parameter values t = t1, t = t2. Then the time taken
to traverse this curve (the optical length of the curve) is

T =
∫ t2

t1

ds

v
=
∫ t2

t1

n(qi, q̇i, t)
c

[
(q̇1)2 + (q̇2)2 + 1

]1/2dt =
∫ t2

t1

Ldt , (13.78)

where we have defined

L(qi, q̇i, t) :=
n(qi, q̇i, t)

c

[
(q̇1)2 + (q̇2)2 + 1

]1/2
. (13.79)

However, our discussion will not be concerned with this special form of L.
We will only require that L be C2, and that the Hessian does not vanish, i.e.,
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(13.4) holds. One immediately verifies that this is so for isotropic media. In
fact the Hessian is

n(qi, t)2

c2

[
(q̇1)2 + (q̇2)2 + 1

]−2 �= 0 .

We can now connect our discussion with the principles of Fermat and Huy-
gens. We can again take Fermat’s principle in the rough form above, viz.,
that a light ray between points P1 and P2 travels by the path that makes
stationary the time taken. It follows that if light is instantaneously emitted
from a point source located at P1 = (q1i, t1) (where now we revert to using 1
to indicate an initial location), then after a time T the light will register on
a surface, F (T ) say, such that each point P2 = (q2i, t2) on F (T ) (where simi-
larly, 2 indicates a final location) is joined to P1 by an extremal along which
the fundamental integral assumes the common value T . This surface is the
wave front for time T , due to the point source emission from P1. Clearly, the
family of wave fronts, as T varies, is precisely the family of geodesic spheres
[for L as in (13.79)] around P1.

Using the Hamilton–Jacobi equation (13.75) (now with just three inde-
pendent variables q1, q2, t), we can readily generalize this, so as to describe
the construction of successive wave fronts, given an initial wave front. Given
an arbitrary solution S(q1, q2, t) of (13.75), and an initial hypersurface h1
given by S(qi, t) = σ1, we can construct at each point P1 ∈ h1 the unique
extremal of the canonical field belonging to the family of hypersurfaces of
constant S. By Fermat’s principle, each such extremal can represent a ray
emitted from P1. If we define along each such extremal the point P2 such
that the fundamental integral

∫ P2

P1
Ldt attains the value T , then the locus

of these points P2 is the surface S = σ1 + T . Thus we construct a family
of geodesically equidistant hypersurfaces.12 To sum up, each solution of the
Hamilton–Jacobi equation represents a family of wave fronts, and the canon-
ical field belonging to a family represents the corresponding light rays.

13.8 From the Optico-Mechanical Analogy
to Wave Mechanics

The rise of wave optics in the nineteeth century led to geometric optics being
regarded as the short-wavelength regime of a wave theory of light. So its
equations and principles, such as the Hamilton–Jacobi equation and Fermat’s
and Huygens’ principles, came to be seen as effective statements derived in
12 The vector pi = ∂S/∂qi is longer the more rapidly S increases over space, i.e., the

more rapidly the light’s time of flight increases over space. So Hamilton called
pi the vector of normal slowness.
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the short-wavelength limit of the full wave theory. But the details of these
derivations are irrelevant here.13

For us the relevant point is that [as is often remarked, e.g., Synge (1954,
Preface), Rund (1966, p. 100)] once one considers this development, together
with the optico-mechanical analogy as stated so far (i.e., as it stood for Hamil-
ton), it is natural to speculate that there might be a wave mechanics, just as
there is a wave optics. That is, it is natural to speculate that classical me-
chanics might describe the short-wavelength regime of a wave mechanics, just
as geometric optics describes the short-wavelength regime of a wave optics.
This is of course precisely what de Broglie, and then Schrödinger, did. To be
more specific, using our Hamilton–Jacobi perspective: they proposed that S
represented, not an ensemble of systems each fully described by its classical
mechanical state (q, p), but a property of an individual system.14

In this section, we give a simple sketch of this proposal. But we shall
not give details of de Broglie’s and Schrödinger’s own arguments, which are
subtle and complicated [Dugas (1988, Part V, Chap. 4) gives some of this
history]. Our sketch is formal, though in the textbook tradition [Rund (1966,
pp. 99–109) and Goldstein (1950, pp. 307–314)]; various books give fuller
accounts, e.g., using the concepts of Fourier analysis and the group velocity
of a wave packet, e.g., Messiah (1966, pp. 50–64), Gasiorowicz (1974, pp.
27–32)]. More precisely, we will first describe how, when we apply Hamilton–
Jacobi theory to a classical mechanical system, the S-function defines for
each time t surfaces of constant S in configuration space, so that by varying
t we can calculate the velocity with which these ‘wave fronts’ propagate (in
configuration space). So far, so classical. But then we will postulate that these
wave fronts are surfaces of constant phase of a time-dependent complex-
valued wave function on configuration space. This will lead us, with some
heuristic steps, to the Schrödinger equation and so to wave mechanics.

Let us consider a classical mechanical system with holonomic ideal con-
straints, on which the constraints are solved so as to give an n-dimensional
configuration space Q, on which the qi are independent variables. More tech-
nically, Q is a manifold, on which the qi are a coordinate system, and on
which the kinetic energy defines a metric. But we shall not go into this as-
13 See, e.g., Born and Wolf (1999, Sects. 3.1, 8.3.1); and Taylor (1996, Sects. 6.6–6.7)

is a brief but advanced mathematical discussion.
14 Of course, successful proposals often seem ‘natural’ in hindsight, and some au-

thors [e.g., Goldstein (1950, p. 314)] maintain that de Broglie’s and Schrödinger’s
proposal would have seemed merely idle speculation if it had been made inde-
pendently of the introduction of Planck’s constant and the subsequent strug-
gles of the old quantum theory. Indeed, even in that context it was obviously
both daringly imaginative (witness the fact that the S wave propagates in
multi-dimensional configuration space), and confusing (witness the interpreta-
tive struggles over the reality of the wave function). In any case, whether the
proposal was natural or not – after all, ‘natural’ is a vague word – all can now
agree that their achievement was enormous.



266 Jeremy Butterfield

pect. We shall simply assume that Q is equipped with the usual Euclidean
metric on R

n, and that the qi are rectangular coordinates. We further assume
that any constraints are time-independent (scleronomous), i.e., any configu-
ration in Q is possible for the system throughout the time period in question.
The result of these assumptions is that the region G ⊂ R

n+1 for which the
formalism of Sect. 13.2 has been developed is now assumed to be an ‘event
space’ or ‘extended configuration space’ of the form Q × T , where T ⊂ R is
some real interval representing a period of time. Finally, we will assume that
our system is conservative, with energy E.

Now we will presume, without rehearsing the usual equations [see espe-
cially Sect. 13.2.1 and (13.69) to (13.73)], that using the above assumptions,
the Lagrangian and Hamiltonian mechanics of our system has been set up. So
if S(qi, t) = σ is a family of geodesically equidistant hypersurfaces associated
with the system (each hypersurface n-dimensional), the family covering our
region G simply, then S satisfies the Hamilton–Jacobi equation in the form
∂S/∂t+E = 0. This can be immediately integrated to give, for some function
S∗ of qi only,

S(qi, t) = S∗(qi)− Et . (13.80)

Hence the pi of the canonical field depend only on S∗: pi := ∂S/∂qi =
∂S∗/∂qi. So the hypersurfaces of our family can be written as

S∗(qi) = Et + σ . (13.81)

For any fixed t, a hypersurface of constant S, considered as a hypersurface in
the configuration space Q (a hypersurface of dimension n−1, i.e., codimension
1), e.g., the surface S(qi, t) = σ1, coincides with a hypersurface of constant
S∗. For this example, the surface S∗ = σ1 + Et. But while the surfaces of
constant S∗ are time-independent, the surfaces of constant S vary with time.
So we can think of the surfaces of constant S as propagating through Q. With
this picture in mind, let us calculate their velocity.

As an aside, we can state the idea of surfaces in Q of constant S more
rigorously, using our assumption that the region G ⊂ R

n+1 is of the form
Q × T . This implies that any equation of constant time, t = const., defines
an n-dimensional submanifold of G which is a ‘copy’ of Q. Let us call it Qt.
Each hypersurface in (13.81) defines an (n − 1)-dimensional submanifold of
Qt (a hypersurface in Qt of codimension 1) given by

S∗(qi) = Et + const. (with t constant) . (13.82)

Then, as in the previous paragraph, fixing the constant σ but letting t vary,
and identifying the different copies Qt of Q, we get a family of (n − 1)-
dimensional submanifolds of Q, parametrized by t. This can be regarded as
a wave front propagating over time through the configuration space Q.

Let us now fix a constant σ and a time t. Let P = (qi) ∈ Q be a point
on the surface S = S∗ − Et = σ and consider the normal to this surface
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(pointing in the direction of propagation) at P . Then the i th component ni

of the unit normal is ni = |∇S∗|−1∂S∗/∂qi. Consider a point P ′ = (qi + dqi)
that lies a distance ds from P along this normal (so dqi = nids). P ′ is on
a subsequent wave front (i.e., with the same value σ of S, but not of S∗) at
time t + dt, where by (13.81)

dS∗ =
∑

i

∂S∗

∂qi
dqi = E dt . (13.83)

Dividing by ds, this yields

dS∗

ds
≡ |∇S∗| =

∑
i

∂S∗

∂qi

dqi

ds
= E

dt

ds
. (13.84)

But we also have

pi =
∂S∗

∂qi
=⇒ p := |p| = |∇S∗| . (13.85)

Combining these equations, (13.84) and (13.85), we deduce that the speed u
of the wave front S = σ, i.e., u := ds/dt, is

u =
E

p
. (13.86)

So far, so classical. But now we postulate that the wave fronts (13.81) [or
(13.82)] are surfaces of constant phase of a suitable time-dependent complex-
valued function ψ on Q. This postulate, together with some heuristic steps,
including a judicious identification of Planck’s constant, will give us a heuris-
tic derivation of the Schrödinger equation. We will assume to begin with that
we can write the postulated function ψ = ψ(qi, t) as

ψ = R(qi, t) exp
{
−2πi

[
νt− φ(qi)

]}
, (13.87)

with R and φ real, so that νt − φ is the phase, and (apart from R possi-
bly having a t-dependence) ν is the frequency associated with ψ. Then our
postulate is that there is some constant h such that

h
[
νt− φ(qi)

]
= Et− S∗(qi) . (13.88)

But this must hold for all qi, t, so that

E = hν , S∗(qi) = hφ(qi) . (13.89)

So the postulated frequency is proportional to the system’s energy. Then,
using our previous calculation of the speed u, and the relation u = λν with
λ the wavelength, we deduce that the wavelength is inversely proportional to
the magnitude of the system momentum. That is,
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u = λν =
E

p
=⇒ λ =

h

p
. (13.90)

Substituting (13.89) in (13.87), we can write ψ as

ψ = R(qi, t) exp
{

2πi
h

[
S∗(qi)− Et

]}
= R(qi, t) exp

{
i
�

[
S∗(qi)− Et

]}
,

(13.91)

where we have defined � := h/2π.
Assuming now that R has no qi-dependence, differentiation of (13.91)

with respect to qi yields

∂ψ

∂qi
=

i
�

∂S∗

∂qi
ψ . (13.92)

Recalling that pi = ∂S∗/∂qi, this is an eigenvalue equation, and suggests that
we associate with the i th component of momentum pi of a system whose R
has no qi-dependence the operator p̂i on wave functions ψ defined by

p̂i :=
�

i
∂

∂qi
, i = 1, . . . , n . (13.93)

Let us postulate this association also for qi-dependent R. Then this suggests
we also associate with the energy of the system the operator Ĥ on wave
functions defined by

Ĥ := H(qi, p̂i, t) , (13.94)

where we understand qi, and functions of it, as operating on wave functions
by ordinary multiplication.

But assuming now that R has no t-dependence, differentiation of (13.91)
with respect to t yields

i�
∂ψ

∂t
= Eψ , (13.95)

suggesting that we should associate with the energy of a system the operator
Ê on wave functions defined by

Ê := i�
∂

∂t
. (13.96)

Incidentally, this definition is also motivated by treating time as a coordinate
along with the qi (see the discussion in Sect. 13.5). Thus (13.93) suggests
that we define

p̂n+1 :=
�

i

∂

∂t
.
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When this is combined with (13.96), we get

p̂n+1 + Ê = 0 , (13.97)

which is analogous to (13.52).
If for general R(qi, t) we endorse both these suggestions – i.e., we identify

the actions on (13.91) of these two suggested operators, (13.94) and (13.96)
– then we get

Ĥψ = i�
∂ψ

∂t
, (13.98)

which, once we identify h as Planck’s constant, is the Schrödinger equation.

13.9 A Glance at the Pilot-Wave Theory

So much by way of sketching the Hamilton–Jacobi perspective on the heuristic
route to wave mechanics. In this final section, I will briefly return to the
question posed by this volume: ‘Quo vadis, quantum mechanics?’, i.e., to the
foundations of quantum theory. First, I want to stress that Hamilton–Jacobi
theory remains an important ingredient in various research programmes in
this field. Prominent among these is the trajectory representation of quantum
mechanics, pioneered by Floyd, and Faraggi and Matone. I cannot go into
details, but would recommend, as places to begin reading, both Floyd (2002)
and Faraggi and Matone (2000). (Besides, Sect. 1 of the latter ends with some
references to other research programmes that use Hamilton–Jacobi theory.)

I shall instead end on Hamilton–Jacobi theory in the context of another
prominent research programme (related to the trajectory representation): de
Broglie’s and Bohm’s pilot-wave theory. Again, this is a large topic, and we
only wish to advertise the recent work of Holland (2001, 2001a).

First, we recall [Bohm (1952, p. 169), Bohm and Hiley (1993, p. 28),
Holland (1993, pp. 69, 134)] that:

• Writing ψ = R(qi, t) exp
[
iS(qi, t)/�

]
, for R,S real, in the one-particle

Schrödinger equation (13.98) with Ĥ := (�2/2m)∇2 + V gives

∂S

∂t
+

1
2m

(∇S)2 + Q + V = 0 , with Q :=
−�

2

2m

∇2R

R
, (13.99)

which looks like the classical Hamilton–Jacobi equation [see (13.23)] of
a particle in an external potential that is the sum of V and Q, which
Bohm called the quantum potential. Indeed Bohm and Hiley call (13.99)
the quantum Hamilton–Jacobi equation. Furthermore,

∂ρ

∂t
+

1
m
∇ · (ρ∇S) = 0 , with ρ := R2 . (13.100)
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• These equations suggest that the quantum system comprises both a wave,
propagating according to the Schrödinger equation, and a particle, which
has a continuous trajectory governed by the wave according to the guid-
ance equation

m
dqi

dt
=

∂S

∂qi

∣∣∣∣
qi=qi(t)

, (13.101)

and a probability distribution given at all times by |ψ|2 = R2.

Besides, comments and equations similar to these apply when we insert
ψ = R exp(iS/�) into the many-particle Schrödinger equation [Bohm (1952,
p. 174), Bohm and Hiley (1993, p. 56 et seq.), Holland (1993, p. 277 et seq.)].

So far, so good. But Holland (2001, p. 1044) points out that the relation
of pilot-wave theory to classical Hamilton–Jacobi theory is not transparent.
In particular, he points out:

• The guidance law (13.101) is “something of an enigma”. It looks like
one half of a canonical transformation that trivializes the motion of a
classical system (by transforming to a set of phase space coordinates that
are constant in time). But what about the other half; and more generally,
can (13.101) be somehow related to a Hamiltonian or Hamilton–Jacobi
theory?

• The dependence of Q on S [through (13.100)] means that the quantum
Hamilton–Jacobi equation (13.99) in effect contains higher derivatives of
S – wholly unlike a classical Hamilton–Jacobi equation.

So Holland undertakes an extensive investigation of this relation. More pre-
cisely, he undertakes to formulate the pilot-wave theory as a Hamiltonian
theory. He does this by assessing a treatment of Q as a field function of qi

on a par with the classical potential V , i.e., a treatment that takes as the
Hamiltonian of the (one-particle) system

H(qi, pi, t) =
1

2m

∑
i

[
p2

i + Q(qi, t) + V (qi, t)
]

. (13.102)

He emphasises that such a treatment faces three obstacles. In brief, these are:

• As we mentioned above, Q depends on S and so presumably, by p =
∂S/∂q, on p. So in a Hamiltonian (phase space) treatment, it seems wrong
to take Q as a function of q alone.

• The free choice of initial positions and momenta in a Hamiltonian treat-
ment will mean that most motions, projected on q, do not give the ortho-
dox quantal distribution, in the way that (13.101) and |ψ|2 = R2 does.

• Is such a treatment compatible with the Hamiltonian description of the
Schrödinger equation? For it to be so, we have to somehow formulate the
particle–wave interaction so as to prevent a back-reaction on the wave.
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However, Holland goes on to show (2001, 2001a) that these obstacles can be
overcome. That is, he vindicates the proposal (13.102) with a Hamiltonian
theory of the interacting wave–particle system. But we cannot enter details.
It must suffice to list some features of his work. In short, his approach:

• generalizes a canonical treatment of a classical particle and associated
ensemble;

• necessitates the introduction of an additional field of which the particle
is the source;

• makes the quantum Hamilton–Jacobi equation and the continuity equa-
tion (13.100) (and other equations for the evolution of particle and field
variables) come out as Hamilton equations;

• interprets p = ∂S/∂q as a constraint on the phase space coordinates of
the wave–particle system;

• gives a general formula expressing the condition that the particle’s phase
space distribution, projected on q, gives the orthodox quantal distribution;

• yields a Hamilton–Jacobi theory of the wave–particle system.

To conclude, I hope to have shown that Hamilton–Jacobi theory, understood
from the perspective of the calculus of variations, gives us insight into both
mechanics and optics – and that, as illustrated by this last section, Hamilton–
Jacobi theory is an important ingredient in current attempts to answer the
question: ‘Quo vadis, quantum mechanics?’
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14 Roundtable Discussion II:
Quantum Mechanics and its Limits

’t Hooft: I’d like to make a general comment on quantum mechanical exper-
iments. This workshop is titled ‘Quo Vadis (where are you going) Quantum
Mechanics?’ but an equally important question should be ‘Unde venis (where
do you come from) quantum mechanics?’

Unidentified [whispers]: Utrecht!

’t Hooft: As for the theory’s future, it’s very unlikely that any breakdown
of quantum mechanics follows from experiments either like these gedanken-
experiments of Elitzur and Dolev’s talk or Anton’s experiments, which are
very precise experiments about the interference of live systems. It’s quite un-
likely that quantum mechanics will break down in these instances. These are
magnificent experiments and I think they are cleverly done. But they are like
what magicians do. You know, I can be thrilled by a magician doing things
which I am sure are impossible, can’t be right. This apple wasn’t there before
and now it is there. Or this dove was not in his hat and now it is. I can’t
explain how it works, but I also know it is all classical physics.

Similarly, I think the real deviation from quantum mechanics, if any,
should happen at extremely high energies or in extreme circumstances, like
matter at extreme densities, etc. There is talk about deviations from special
relativity, if you look at photons with extremely high energy which have trav-
eled long distances in space, something like that. They see minute deviations
from the laws of physics as we know them.1 We expect possibly very, very
minor deviations from quantum mechanics in these extreme circumstances.
The most extreme circumstance we can think of is physics at the Planck scale,
where particles collide with each other at Planckian energies, and make black
holes, and so on. This is extreme physics far away from what we do even as
physicists in our daily lives. So that’s where you expect possible deviations.

Hiley: I want to get things clear here because I agree with you that we
want to try and push at the boundaries, doing experiments to see whether
1 M. Drees: Particle physics explanations for ultra high energy cosmic ray events,

invited plenary talk at PASCOS03, Mumbai, India, January 2003. Los Alamos
archives hep-ph/0304030 (2003).
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quantum theory is going to break down or not. My only issue here is whether
we use the Bohm approach or standard quantum theory. Now, what does
Bohm do? Bohm says,2 all right, we have got this equation, the real part
of the Schrödinger equation and with it the quantum potential. We want
to have an ontological (or realist) description. If we assume particles follow
trajectories, and we can calculate these trajectories from this equation then
we can get an interpretation of quantum mechanics. It works and is not in
conflict with experiment.

Suppose you now want to ask something like: Does the particle really
follow the trajectory or does it sit on some sub-quantum medium which gen-
erates a stochastic process affecting the particle? One could test the latter
possibility only if one had a good theory that produces different results from
the orthodox quantum mechanics. My frustration is with people who waste
time trying to distinguish between the Bohm approach and standard quan-
tum mechanics without adding anything new. Both approaches are based on
the same mathematics and will always produce the same empirical results
unless something new is introduced. We need new ideas and what we should
be doing is what Lee [Smolin] is doing, and what Penrose is suggesting. They
are exploring new ideas that will produce different results, which if correct
will show that quantum theory is wrong , or better still, show that it is limited
in some way.

Hartle: Do you see any signs that Bohm theory, or quantum mechanics,
breaks down as an experimentally correct description, or would you care to
speculate on what scale that might happen?

Hiley: No, otherwise I’d be singing it from the rooftops! The sort of thing
that Penrose proposed was something that should be encouraged.3 The other
idea was something that Prigogine was trying to work on.4 He suggested that
there was some irreversible dynamics underlying quantum theory. In other
words he was actually changing the theory in some way, motivated by good
physical reasons. Not changing it merely for the sake of change. That’s how
I would try to push it. It is difficult to produce something new that works
but we should keep on trying rather than keeping the old game of ‘whose
2 D. Bohm and B.J. Hiley: The Undivided Universe: An Ontological Interpretation

of Quantum Theory , Routledge, London (1993).
3 The allusion is to Penrose’s hypothesis that quantum superpositions remain as

long as the difference in the spacetime manifold, entailed by the different mass
configurations, is kept below some threshold value. Above that limit, he proposed,
some nonlinear dynamics, emanating from an as yet unknown theory of quantum
gravity, will cause a collapse. See, e.g., R. Penrose: Non-locality and objectivity
in quantum state reduction. In: Fundamental Aspects of Quantum Theory , ed.
by J. Anandan and J.L. Safko, World Scientific, Singapore (1994).

4 I. Prigogine: The Arrow of Time. In: The Chaotic Universe, ed. by V.G.
Gurzadyan and R. Ruffini, World Scientific, Singapore (2000).
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interpretation is right’ going. I think all interpretations are limited. All they
are doing is talking in different ways about the same formalism. We want
some new formalism. Even Gerard [’t Hooft]’s work will be suggesting things
which will lead to different results and that’s what we should be looking for.

Hartle: Am I correctly interpreting the subject of discussion as: Where would
quantum theory break down?

Smolin: One thing which people have said for a long time, which turns out
to be wrong, is that there is no possibility of sensitivity to the Planck scale.
Many people have realized in the last two or three years that experiments
with cosmic rays, experiments with gamma-ray bursts, give us sensitivity to
breakdown of symmetries, for example the Lorentz invariance, at the scale
of the energy of the particles times the Planck length. These are real experi-
ments, for example, the GLAST (Gamma Ray Large Area Space Telescope)
experiment, will measure energy dependence of photons to the order of en-
ergy times the Planck length. And there are also very sensitive experiments
regarding CPT breaking still going on. And one should look for these kinds of
things. I draw two conclusions from that. First, all the alternative proposals
about changes to quantum mechanics which I mentioned and then discarded
because they can’t be made Lorentz invariant, for which there is a list, maybe
should not be so quickly thrown away, because maybe Lorentz invariance is
not a real symmetry of nature, and certainly a discovery of breakdown of
Lorentz invariance is quite within the realm of possibilities. There are people
who claim that violations of the GZK cutoff found in cosmic rays5 already sig-
nal breakdown of Lorentz invariance. Another thing is that we should never
underestimate the imagination and the skill of the experimenters to surprise
us, and I think to become complacent about what will not happen soon ex-
perimentally is silly, because one only has to go back a hundred years and
read the very complacent statements by Mach and other people that atoms
would never be observed and therefore certain theoretical avenues should be
closed off. It’s really shocking how silly theorists can get about what experi-
mentalists won’t be able to do!

Saunders: I want to remark about the pilot-wave theory. It seems to me
that there is a view here that it is equivalent to standard quantum mechan-
ics. But no one to this day produced a single model of pair creation or pair
annihilation events using the pilot wave formalism. The pilot wave theory
exists as a non-relativistic theory alone.

5 K. Greisen: Phys Rev. Lett. 16, 748 (1966); G.T. Zatsepin and V.A. Kuzmin:
JET Ph. Lett. 4, 78 (1966).
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Hartle: Can’t pair creation be handled in Bohm theory by using quantum
fields as variables?

Saunders: No, because you’re going to use field configurations as the ‘be-
ables’,6 and you need a recipe for translating trajectories of field configura-
tions into pair creation and annihilation events. And furthermore you need
to show that things like measurement pointer positions are well defined, and
well localized in space. There has not been a single model produced of that
form, and nor has a single argument shown that you could expect that such a
model will do the job. The only reason that standard pilot wave theory gives
you well localized events is because it puts in particles as beables. Once you
start putting field configurations as these beables, there is as yet not even an
intuitive hand-waving argument to show or to give any reason to think that
you will get well localized events where you need them.

Hartle: Basil, do you want to comment on that?

Hiley: I agree with it. One of the problems that David [Bohm] and I had was
how the classical limit emerges from the pilot wave theory as we were working
on it. It emerges once you have a localized wave packet. But our problem was
how you localize the wave packet in the first place when starting from the
field theoretic viewpoint.

Stapp: As I see the problem, the extra part of the Bohm theory that is im-
portant is of course that this trajectory has certain empirical consequences.
When this trajectory passes through a detector, that detector is supposed to
fire. When the observer is watching a counter, if the trajectory is in the chan-
nel that is passing through that detector, then that detector ought to fire.
So Elitzur (see Chap. 17) is pointing out a situation where we have several
counters in a row and presuming one trajectory is either passing through all
of them or none of them. So how can you explain in a Bohm theory that just
the central detector fires and the others on the outside do not fire?

Hiley: First of all I would need notice of that question. But my comment
would be that this is a more elaborate version of the Scully objection.7 The
detectors we are trying to fool are still quantum systems. And if they are
still quantum systems they don’t constitute an actual measurement where
something irreversible has definitely happened. This means that the quan-
tum potential is still active, but it is non-local, and it’s through the non-local
quantum potential that you account for these phenomena. Now we might
6 The speaker refers here to a useful term coined by J.S. Bell in his Speakable and

Unspeakable in Quantum Mechanics (Cambridge University Press, 1987), where
he distinguished between ‘beables’ and ‘speakables’.

7 B. Scully: Physica Scripta T76, 41–46 (1998).
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argue that we don’t like nonlocality, and the type of experiments Elitzur and
Dolev are doing makes this nonlocality worse and worse. Then you could say:
“All right, I don’t want to follow this idea any more, and I’ll go back to the
Copenhagen view.” But I don’t see that we’ve reached that particular level
yet.8

Hartle: If these seven objects in a row really were detectors, would you agree
with Elitzur and Dolev? That is, if you looked at them and saw that one out of
the row had fired and not the others, would you agree that there is a problem?

Hiley: No, I am not saying there would be a problem.

Elitzur: Not even then? Even if they were classical detectors?

Hiley: No. The reason why you think you are beating the Bohm interpreta-
tion is because you are using atoms instead of classical systems.

Butterfield: I think there is a bit of confusion here because of the word ‘de-
tector’. When Henry [Stapp] says “if it’s really detecting”, I think he means
something like “if you know for sure that it can’t be fooled”. But the point of
the Hiley escape from the Scully kind of puzzle is that, as I understand it, we
must not think that in the Bohm theory position measurement is always, as
the philosophers call it, veridical. It doesn’t always speak the truth. Position
is favored as a quantity in the theory, but detectors can be fooled.

Hiley: Yes, and there is an explanation of why the fooling takes place,
through the quantum potential and its non-locality.

Rovelli: I’d like to say something about the breakdown of quantum me-
chanics. I’ve heard a lot of comments on where we expect, or search for
this breakdown. Of course, in fundamental theoretical physics everything has
changed dramatically and may well continue to change forever. But we have
discovered quantum mechanics and it’s also possible that quantum mechanics
is going to last as long as classical mechanics. And if this is so – and I believe
it is – we have to get used to it and understand it. When Galileo discovered
the Galilean invariance, and the main idea that is a part of this view, namely
that there is no center of the universe, it took forever for people to just get
used to that, to the point that, if we read the Principia, there is a nice pas-
sage in which Newton says: “Yes, of course, but there should be a center of
the universe which is not the sun, but it should be close to the sun” – which
is total nonsense. This is a point in which Newton was going silly – even him
– because all the rest of his theory doesn’t need a preferred reference system,
8 I have now shown that non-locality is not necessary to answer Scully’s objections.

(BH)
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and doesn’t need a center of the universe. So even he couldn’t get used to the
new philosophy that had come out. We should try to extract from quantum
mechanics and general relativity what these extremely subversive and radical
theories are trying to tell us. They give us extremely radical mental frame-
works for understanding the world. The big challenge is not to be so smart
to look for the breakdown of quantum mechanics. The challenge here is to
get completely used to this new framework and learn about how to think of
the world in terms which are completely general relativistic and completely
quantum mechanical. Perhaps we have to stay with this theory for a long time.

Butterfield: I’d like to hear more from Gerard [’t Hooft] about his idea
that time is a matter of the clear prescription of order with which we apply
the formalism. Because that was on his projection, but it doesn’t sound like
anything connected with the notion of time in either orthodox physics or the
normal debates we have about time in quantum gravity, such as quantum
general relativity. Gerard, would you like to say more about that?

’t Hooft: The idea is that time in conventional physics is, of course, also
the fourth coordinate in the Minkowski space. It is also the coordinate which
plays a central role in Schrödinger’s equation. And in GR time is again ba-
sically the fourth coordinate which has a negative eigenvalue or the different
eigenvalue in the metric tensor. And all these notions of time coincide. That
doesn’t have to be so, but I think the most important aspect of time is, of
course, causality, the fact that things in the past are known and things in
the future appear to be determined by things happening in the past, at least
according to classical physics. I would be in favor of the idea that the same
thing should still hold also for quantum mechanics, so that the future is deter-
mined by the past according to some principle of causality. I’d make causality
very central to my understanding of physics. If a theory were acausal, I would
have a very deep philosophical difficulty with accepting it because the the-
ory would not tell us in which order to apply its equations. I wouldn’t know
where to begin. If I had a closed timelike loop I wouldn’t know where to
start writing the history. It’s always the complaint we have in science fiction
stories where a closed timelike loop occurs: they begin somewhere but they
don’t begin at the beginning, because there is no beginning! There is no cor-
rect prescription about how to proceed. Now I don’t care much about science
fiction stories, but I do care about physical theories. I want the theory to
give me a unique prescription which tells me once and for all where to start
doing my calculations and how to proceed, and in which order, such that if
you take the wrong order you might get the wrong answer. I want a theory
which gives me one precisely guaranteed answer – not two or zero answers,
but exactly one! Which means that you must give, in your prescription, the
order in which you do your calculations. Now it seems a practical feature
that we have gotten used to in physics that that order happens to be also the
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order of the fourth coordinate of Minkowski space and the time parameter
in Schrödinger’s equation. That doesn’t have to be so. I could imagine a de-
viation from quantum mechanics or a deviation from relativity where causal
time no longer coincides with Minkowski time. But the fact that it appears to
do so is very convenient for our understanding of the theory. If it weren’t like
that, we would certainly have big difficulties understanding how to proceed.
But taking the notion which I have of time – that there should be something
which has a causality in it – is to me by far a superior definition of time. This
causality would be in my definition of time. Everything else would depend on
that. If you then have a Schrödinger equation, you always know what to do.
If you have a metrical spacetime again you’d always be able to solve these
elliptic equations because you can write down Cauchy surfaces and the like.
So if a theory deviates from that, I would want to know how and why, and
how to restore causality. But in any case I think that the definition I gave of
time is one which, by construction, will never allow for closed timelike loops.

Saunders: I’d like to make a comment on the three philosophies of time
that were mentioned in some of the preceding lectures. And I want to ask
Lee [Smolin] how Carlo [Rovelli] gives this fourth philosophy of time. But
perhaps it would help if I just summarize the three philosophies. The first
is the Block Universe, where all times have the same degree of reality. The
second is Presentism, where only the present is real. The third is Meta-Time,
where time itself is somehow evolving by some higher time parameter. It
seems to me that the Block Universe is not denying that there is becoming.
It rather depicts becoming. It depicts change in terms of relations among its
parts. That would be just a comment on this first option. But over to Lee
and Carlo’s fourth alternative.

Smolin: One slogan about this which actually came from Freeman Dyson,
quoting somebody else whom I don’t remember, is that the classical descrip-
tion is the description that we give of our past and the quantum description
is the description that we give of our future. And I think that when Freeman
said that, and we can credit him with this, he was really taking on relational
quantum theory because he was saying that one divides the world into classi-
cal and quantum realms differently according to where they are in time. And
I think that’s what I really want to bring up. Futini Markopoulou9 makes
this explicit in this formalism called quantum causal histories, where to every
causal past of an observer there is one of Carlo [Rovelli]’s relational Hilbert
spaces, and you can play Carlo’s game just using the causal structure to keep
track of who transmits information to whom, and so here there is no Block
Universe and it’s something between Becoming and Presentism and so forth.
But the point is that, in order to think this way, you have to think Carlo’s
9 F. Markopoulou: Quantum causal histories, Class. Quant. Grav. 17, 2059–2072

(2000).
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way. How I divide the world into past and present is related to how I divide
the world into classical and quantum. One way that I think about it – al-
though I don’t know how far this goes but take on board all of these things
– is that the classical description is the description that I give to my causal
past, where I can describe in classical terms what happened. Also, I can talk
about my causal future in classical terms because of this weird thing that I
am able to plan some of the things I will do, like decide what experiments
I make. It seems that the quantum description, in terms of the quantum
state and uncertainty principle and so forth, is the description I give to that
which is spacelike to me at any moment. And a measurement is nothing spe-
cial, just when some information that is now spacelike to me comes into my
past. And that is ‘what the measurement is’. And this idea then tells us that
straightening out quantum mechanics has a lot to do with causal structure
and therefore with the structure of spacetime. This is roughly this fourth
alternative.



15 New Insight into Quantum Entanglement
Using Weak Values

Yakir Aharonov and Shahar Dolev

Using the two-vector formalism, we show how some recent quantum mechan-
ical paradoxes get a natural explanation and how surprising new predictions
can be derived from quantum theory.

15.1 Entanglement and Pre- and Post-Selection

According to classical physics, if we know the state of a system of particles
we also know the state of each individual particle. Furthermore, knowledge
of this state allows us to know, at least in principle, a unique state of the
particles for all times. However, this is not the case according to quantum
mechanics.

First, while it is possible to know exactly the quantum state for a system
of particles, this knowledge may not be enough to determine also the quantum
state of the individual particles. The classic example is the singlet state

|ψ〉 =
1√
2
|+〉1|−〉2 −

1√
2
|−〉1|+〉2 . (15.1)

Here, the state |ψ〉 tells us absolutely nothing about the state of particles 1
or 2 separately. Such states, which cannot be brought to a product form, i.e.,

|ψ〉 = |a〉1|b〉2 , (15.2)

are the so-called entangled states. Very interesting consequences related to
non-locality stem from properties of these states, as in the EPR experiment.

Secondly, quantum mechanics is not deterministic. If we know the state
|ψ〉 now, we cannot be sure of what the state will be later, for example after
a second measurement has been performed on the system. At any given time,
we should therefore ‘tag’ a system not only by the initial quantum state |ψ〉,
but also by assigning to it a final state |φ〉, representing some ‘exit’ conditions
that cannot be determined from prior knowledge of |ψ〉. In fact, experiments
where the system is delimited both by initial and final conditions are not
uncommon. These are the so-called exclusive measurements. When a system
is labeled in this way, we say that it belongs to a pre- and post-selected
ensemble.
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Based on this idea of pre- and post-selection, a whole interpretation of
quantum mechanics has been developed which is called the two-vector for-
mulation [1–3]. The idea is that, at any given time, the state of the system
is described both by the initial vector |ψ〉 and the final vector |φ〉. This new
way of thinking also brings some novel insights into some of the puzzles en-
tailed by quantum mechanical entanglement. One of the side branches of this
interpretation, the weak measurement, gave such an insight [2, 4, 5].

15.2 Weak Measurements

Suppose we are given a physical ensemble of N � 1 uncorrelated spin-1/2
particles, and we are told that all of them are prepared in the same state
|ψ〉 = |n̂+〉, where n̂ is some direction unknown to us. We wish to find this
direction.

One possibility is to divide the ensemble into three subensembles of size
N/3, and within each one measure the same direction on every spin, say σx

in the first subensemble, σy in the second one, and σz in the third. From
these measurements one can obtain the expectation value n̂ = 〈ψ|φ|ψ〉 to
an accuracy of order 1/

√
N . The only problem with this method is that the

ensemble we are left with will be very different from the initial one, as the
particles are now in any one of the states |x̂±〉, |ŷ±〉 or |ẑ±〉, not the initial
state |n̂+〉.

There is, however, an alternative type of measurement, called ‘weak mea-
surement’, which allows us to find the direction n̂ by minimally disturbing
the initial state of the N -particle system.

Let us look at the composite state

|ψ(N)〉 = |ψ〉1|ψ〉2 . . . |ψ〉N . (15.3)

Instead of measuring the spin components of each system individually, we
make just three successive measurements of the ‘average’ spin operators σ̂

(N)
x ,

σ̂
(N)
y , σ̂

(N)
z of the N -particle system, where we define

Â(N) ≡ 1
N

N∑
i=1

Âi , (15.4)

and Âi is the same operator as Â acting on the i th particle.
In fact, as N → ∞, the ‘average’ operators behave very much like clas-

sical variables, and so weak measurements are nothing more than ‘classical’
measurements at the macroscopic scale. To see this, suppose that[

Â, B̂
]

= iĈ . (15.5)

Then, using the fact that operators acting on different particles commute,
one can show that
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Â(N), B̂(N)] = i

1
N

Ĉ(N) . (15.6)

Therefore, Â(N) and B̂(N) commute in the limit N →∞.
More precisely, we can show that, in the same limit, any product state

such as |ψ(N)〉 becomes an eigenstate of the operator Â(N). For this we make
use of a very simple but powerful identity:

Â|ψ〉 = Ā|ψ〉+ ∆A|ψ⊥〉 , (15.7)

where Ā is the expectation value

Ā = 〈ψ|Â|ψ〉 , (15.8)

∆A is the difference

(∆A)2 = 〈ψ|(Â− Ā)2|ψ〉 , (15.9)

and |ψ⊥〉 is some orthogonal state such that

〈ψ|ψ⊥〉 = 0 . (15.10)

We now apply this identity to Â(N) and |ψ(N)〉. The state Â(N)|ψ(N)〉 is now

Â(N)|ψ(N)〉 =
1
N

[
NĀ|ψ(N)〉+ ∆A

∑
i

|ψ(N)
⊥ (i)〉

]
, (15.11)

where the states |ψ(N)
⊥ (i)〉 are mutually orthogonal, and are given by

|ψ(N)
⊥ (i)〉 = |ψ〉1|ψ〉2 . . . |ψ⊥〉i . . . |ψ〉N . (15.12)

If we further define a normalized state

|ψ(N) ⊥〉 =
∑

i

1√
N
|ψ(N)

⊥ (i)〉 , (15.13)

we obtain

Â(N)|ψ(N)〉 = Ā|ψ(N)〉+ ∆A√
N
|ψ(N) ⊥〉 . (15.14)

Therefore, |ψ(N)〉 becomes an eigenstate of Â(N) with eigenvalue Ā, as N →
∞. We should note that the O(N−1/2) behavior of ∆A(N) holds even when
the particles are not all in the same state, as long as the composite N -particle
state is a product state.

So we see that it is indeed possible to arrange things, by taking N suffi-
ciently large, in such a way that n̂ = 〈ψ|σ|ψ〉 can be determined from just
three measurements while barely disturbing the state of the spins.
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15.3 Weak Values

Now, as we saw earlier, quantum mechanics allows us to impose additional
final conditions on the system which are not encoded in the initial state
vector |ψ〉. Based on this idea, a new physical quantity was proposed, the
‘weak value’ of a given observable. As we shall see, weak values provide a
natural description of a system confined by two boundary conditions.

In order to motivate the definition of the weak value, let us first re-express
the standard expectation value Ā by expanding it in a complete set of states
|φn〉:

Ā = 〈ψ|Â|ψ〉 = 〈ψ|
∑

n |φn〉〈φn|Â|ψ〉 =
∑

n

|〈ψ|φn〉|2
〈φn|Â|ψ〉
〈φn|ψ〉

. (15.15)

If we think of the states |φn〉 as the possible outcomes of some final measure-
ment on the system, then the coefficients |〈ψ|φn〉|2 give us the probabilities
P (n) of these outcomes. We can therefore view Ā as the average

Ā =
∑

n

P (n)Aw(n) , (15.16)

where

Aw(n) ≡ 〈φn|Â|ψ〉
〈φn|ψ〉

(15.17)

is the weak value of Â when post-selecting |φn〉. In this way, we obtain an
alternative interpretation of the expectation value, as an average of weak
values.

In fact, weak values, as well as the decomposition (15.16), actually reflect
definite outcomes of measurements that could be performed in the laboratory.
These are the weak measurements discussed earlier, but performed on a pre-
and post-selected ensemble. Suppose we start with N particles, all in the
same initial state |ψ〉. We then perform the measurement of the ‘average’
observable Â(N). Finally the particles are post-selected by performing an
ordinary measurement on each particle. If, by chance, all the particles end
up in the same final state |φn〉, the claim is then that, as N →∞, the result
of the intermediate measurement must yield, with increasing certainty, the
weak value

Aw(n) =
〈φn|Â|ψ〉
〈φn|ψ〉

.

More precisely, suppose that the weak measuring apparatus is described by
two canonically conjugate variables q and p, where p plays the role of the
‘pointer’ variable. The measuring interaction corresponds to a brief coupling
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between the system and the apparatus that implements a translation of the
operator p̂ by Â(N):

p̂→ p̂ + Â(N) . (15.18)

We now concentrate on the ensemble of N identical systems defined by the
initial product state |ψ(N)〉 and the final product state |φ(N)〉. Clearly, as
N → ∞, the probability |〈φ(N)|ψ(N)〉|2 of obtaining the state |φ〉 on each
system goes to zero as well. However, suppose that this rare final condition
does indeed occur for a finite but very large N . It has been shown (see [2]
for details) that if the initial state |ξi〉 of the measuring apparatus has for
instance a Gaussian wave function

ξi(p) ∝ exp
[
−(∆q)2p2] , (15.19)

then for any fixed ∆q, the wave function after the interaction becomes

ξf (p) ∝ exp

⎡⎣−(∆q)2
(

p− 〈φ|Â|ψ〉〈φ|ψ〉

)2
⎤⎦ , (15.20)

with increasing accuracy as N →∞.
Note that the weak value Aw need not be a real number. In such a case, its

real part is therefore obtained (±∆p ∼ 1/∆q) by looking at the translation of
the ‘pointer’ variable of the measuring apparatus, while the imaginary part
can be obtained by looking instead at the conjugate variable q.

The weak value can also be realized statistically, by performing separate
measurements of Â on each of the individual systems, if in each measurement
device the uncertainty ∆q, which determines the disturbance, is sufficiently
small. Since this also implies that the individual pointer uncertainty ∆p will
be large, the weak value is again obtained at the level of the ensemble, but
now from the mean reading of p (to accuracy ∆p/

√
N). In this sense we

can reproduce the decomposition (15.16). If the final basis is {|φn〉}, then
an initial ensemble prepared in the state |ψ〉 breaks up into sub-ensembles
described by the states |φn〉, each of relative size P (n) = |〈φn|ψ〉|2. The mean
reading from each of these sub-ensembles will be the respective weak value

Aw(n) =
〈φn|Â|ψ〉
〈φn|ψ〉

.

If we then pool all the readings, the average reading from the initial ensemble
will be

∑
n P (n)Aw(n). Equation (15.16) shows that, as expected, this is

nothing more than the standard average value 〈ψ|Â|ψ〉.
So we can see that weak measurements naturally define a physical quantity

that encodes the properties of a system described by initial and final boundary
conditions. More interestingly, these properties may differ dramatically from
what we are led to expect from our quantum intuitions, based on initial
conditions only:
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(a) The weak value of a sum of operators is the sum of their weak val-
ues. Measuring the weak value of the operator Ĉ = Â + B̂ will yield
Cw = Aw + Bw:

Cw =
〈φn|Ĉ|ψ〉
〈φn|ψ〉

=
〈φn|Â + B̂|ψ〉
〈φn|ψ〉

=
〈φn|Â|ψ〉+ 〈φn|B̂|ψ〉

〈φn|ψ〉
= Aw + Bw . (15.21)

(b) As a result, the weak values might lie outside the range of the eigenvalues
of the operator. Suppose we start with a system of spins all prepared in the
|σx = +1〉 state and post-selected in the final state |σy = +1〉. Given this
unlikely event (for N � 1), a weak measurement of the spin component
σu = σ·û, where

û =
1√
2
x̂ +

1√
2
ŷ , (15.22)

yields a weak value which lies outside the bounds of the spectrum of σu

[or σ
(N)
u for that matter]:

〈σy = +1| 1√
2
σ̂x + 1√

2
σ̂y|σx = +1〉

〈σy = +1|σx = +1〉 =
√

2 (!) (15.23)

Note also that in this case the weak value of σu is obtained from the
vector sum of the weak values along x̂ and ŷ, as in classical physics.

(c) If between the pre- and post-selection events, a standard measurement of
an operator Â is performed, and if Â has only 2 eigenvalues (e.g., projec-
tion oprator or spin-1/2 measurement), and the result of the measurement
complies with the post-selection condition, and no other measurement is
performed in that interval, then the result of the measurement of Â will
equal the weak value Aw of the same operator.
That is, if the result of the measurement is

Â|ψ〉 −→ a|φ〉 , (15.24)

Then the weak value between the pre- and post-selection events is

Aw = a . (15.25)
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(d) One of the consequences of the above result is that weak values of
non-commuting variables can be measured simultaneously. For two non-
commuting operators Â and B̂, it is possible to measure both weak values
Aw and Bw between the pre- and post-selection events. The results will
be the same as if each measurement were conducted separately.
This outcome is very interesting since it deals with the way counter-
factual measurements are handled. In standard analysis, counterfactual
measurements are mutually exclusive: between the pre- and post-selection
events, measurement of one operator, Â, interferes with measurement of
the other, B̂. With weak measurements, in contrast, both values, Aw
and Bw, can be measured simultaneously since weak measurement only
slightly alters the state of the system. According to outcome (c) above,
this means that, between the pre- and post-selection events, measurement
of Â will yield the value Aw while a counterfactual measurement of B̂
would have yielded the value Bw.

15.4 Interaction-Free Measurements

Before seeing what all this has to do with entanglement, we will need to dis-
cuss the concept of interaction-free measurements, first introduced by Elitzur
and Vaidman [6]. In the original version, the idea is as follows.

We consider a Mach–Zender Interferometer (MZI) as shown in Fig. 15.1.
A photon enters the interferometer at a beam-splitter BS1, from which it is
transmitted or reflected with probability 1/2. The beam is reconverged at
another 50/50 beam-splitter BS2 by two totally reflecting mirrors M1 and
M2, each one along one of the arms of the MZI. Since the beam suffers a
rotation of π in its phase each time it is reflected, one can arrange the arms
of the interferometer in such a way that the transmitted amplitude for the
path,

source −→ BS1 −→ M2 −→ BS2 → D , (15.26)

is 180◦ out of phase with the reflected amplitude

source −→ BS1 −→ M1 −→ BS2 −→ D . (15.27)

Since the two paths reaching detector D suffer a complete destructive inter-
ference, while the two paths that go to detector C give rise to constructive
interference, the photon can only be detected by detector C.

Technically, the photon was split by BS1:

|Ψ〉 = |γ〉 BS1−−→ 1√
2
(i|u〉+ |v〉) . (15.28)

The multiplication of |u〉 by i is due to phase rotation resulting from the
reflection. BS2 then brings about the following transformation:
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Fig. 15.1. Mach–Zhender interferometer (MZI)

|v〉 BS2−−→ 1√
2
(|d〉+ i|c〉) , (15.29)

|u〉 BS2−−→ 1√
2
(|c〉+ i|d〉) , (15.30)

leading to the result

|Ψ〉 BS2−−→ |c〉 . (15.31)

As demonstrated by Elitzur and Vaidman (EV) [6], IFM is achieved when a
macroscopic detector is placed on path v – a super-sensitive bomb in EV’s
article (see Fig. 15.2). The fact that a detector is present on path v can result
in one of two outcomes:

1. The detector registers a particle (or the bomb explodes), meaning that
the photon went through path v and was detected there. In that case,
the wave function becomes:

|Ψ〉 detection−−−−−→ 1√
2
|v〉 . (15.32)

2. The detector does not click (or the bomb remains intact). Although that
does not qualify as a measurement in the ordinary sense, it does affect
the photon’s state, an influence that has measurable results. Since the
photon was not found in v, it must have gone through u, and the state
therefore becomes

|Ψ〉 no detection−−−−−−−→ i√
2
|u〉 , (15.33)

and the interference pattern, at the output of the MZI, breaks:
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Fig. 15.2. Interaction-free measurement

|Ψ〉 BS2−−→ 1
2
(i|c〉 − |d〉) . (15.34)

Here, there is a fifty–fifty chance that detector D will click.

This result implies that, by considering only the measurement results from
the D detector at the output of the interferometer, one can determine whether
a measurement was carried out inside it, while no interaction whatsoever has
taken place.

15.5 Hardy’s Gedankenexperiment

An interesting twist to the above idea was provided by Hardy [7] (see also
Chap. 17). In this case two similar MZI arrangements are considered, one with
a positron and one with an electron. When taken separately, the electron can
only be detected at its C detector (marked C−) and the positron at its C
detector (marked C+).

We now consider a situation where the two interferometers are brought
together in such a way that the u− arm of the electron MZI intersects with
the u+ arm of the positron MZI at point A (Fig. 15.3). We assume that,
if the electron and positron are both found in this region, then they should
annihilate each other with a 100% probability. However, it is possible that
each particle will perform an IFM on the other. In that case, there is a 25%
probability that both particles will hit detector D.

Formally,

|Ψ〉 = |e−〉|e+〉 BS1−−→ 1
2
(i|u−〉+ |v−〉)(i|u+〉+ |v+〉) . (15.35)

After the annihilation point A, post-selecting only the cases in which no
annihilation took place, the term |u−〉|u+〉 is eliminated, leaving us with
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Fig. 15.3. Hardy’s paradox

|Ψ〉 no annihilation−−−−−−−−−→ 1
2
(
i|u−〉|v+〉+ i|v−〉|u+〉+ |v−〉|v+〉

)
. (15.36)

After passing BS2,

|Ψ〉 BS2−−→ 1
2
(
i|c−〉|d+〉+ i|d−〉|c+〉+ |d−〉|d+〉

)
. (15.37)

The interesting case, now, is in the third term, when both D− and D+ click.
If we try to analyze the situation we conclude as follows:

• The clicking of D− tells us from the previous example that something
disturbed the electron path in the intersecting arm (u−), hence it could
only have gone through the non-intersecting arm (v−).

• But if this were so, the fact that D+ clicked tells us that the positron
could only have gone through the intersecting arm (u+).

• But the same logic could be applied starting from the clicking of D+, in
which case we deduce that the positron went through the non-intersecting
arm (v+) and the electron through the intersecting arm (u−).

• Clearly, the two alternatives are mutually contradictory.
• A third possibility is then that both the electron and the positron were

present in the intersecting arms, but in this case annihilation would have
ensued.

Indeed, a paradoxical situation. It seems that it stems from the fact that, in
quantum mechanics, one cannot measure which way the particle went without
ruining the interference at the output of the MZI. If we try to ascertain which
of the above assertions is true, by measuring which way the particles went,
we will never get the interference at the output of the interferometers. Weak
measurements, however, supply us with a wonderful opportunity to (weakly)
obtain which-way information, while keeping the interference intact.
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15.6 Weak Measurement Analysis

In order to try and resolve the above paradox, let us recruit the weak mea-
surement. It will allow us to measure the particles as they travel through the
interferometer without noticeably affecting their quantum state.

Our main objective is to answer questions like:

• Did the electron take the intersecting arm?
• Where was the positron when the electron went through the non-intersect-

ing arm?

In order to answer questions like the first one, we will use the route occupation
operators for the intersecting (I) and non-intersecting (NI) arms:

N̂(e+
NI) = |v+〉〈v+| , N̂(e+

I ) = |u+〉〈u+| ,
N̂(e−

NI) = |v−〉〈v−| , N̂(e−
I ) = |u−〉〈u−| .

(15.38)

In order to answer questions like the second, we will use pair occupation
operators, which will measure the simultaneous location of both the electron
and the positron:

N̂(e+
NI, e

−
I ) = |v+〉〈v+||u−〉〈u−| , N̂(e+

I , e−
NI) = |u+〉〈u+||v−〉〈v−|

N̂(e+
I , e−

I ) = |u+〉〈u+||u−〉〈u−| , N̂(e+
NI, e

−
NI) = |v+〉〈v+||v−〉〈v−| .

(15.39)

One must pay attention to the fact that a weak value of the product of
observables is different from the product of the weak values of the observables
(if Ĉ = Â · B̂, then Cw �= AwBw). Since weak measurements do not interfere
with the quantum state, all the above observables can be weakly measured
simultaneously:

Nw(e+
NI) = 0 , Nw(e+

I ) = 1 , (15.40)

Nw(e−
NI) = 0 , Nw(e−

I ) = 1 , (15.41)

Nw(e+
I , e−

I ) = 0 , (15.42)

Nw(e+
NI, e

−
I ) = 1 , Nw(e+

I , e−
NI) = 1 , (15.43)

Nw(e+
NI, e

−
NI) = −1 . (15.44)

Let us now scrutinize these values. According to outcomes (c) and (d) on
p. 288, the following counterfactual statement is true:
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If a measurement of some operator Â were performed between the
initiation of the experiment (the pre-selection event) and the mea-
surement of the particles at D− and D+ (the post-selection event),
while the measurement at the end was still D− and D+, then the
outcome of the measurement would be equal to the weak value of Â.

This means that the weak values should comply with our basic intuitions
with regard to the whereabouts of the electron and the positron. Let us now
look at the values and see how our intuition scores.

• Nw(e+
NI) = 0. This means that the positron did not take the non-

intersecting arm of the interferometer. That is reasonable, since if it had
taken that route, nothing would have obstructed the electron, and the
latter would have reached detector C− instead of D−.
It should be remembered that the weak value of an operator has the same
value as a counterfactual standard measurement of the same operator that
could have been conducted, given that the post-selection condition was
still met. If a which-way detector had detected the positron in the non-
intersecting route, then the electron could not have met the post-selection
condition, that is, reaching detector D−.

• Nw(e+
I ) = 1. The intersecting arm of the positron was occupied. The

positron then interfered with the superposition state of the electron and
caused it to reach detector D−.
Together with the above statement, the fact that the positron was local-
ized in the intersecting arm and not split equally between the two arms
means that the superposition state in the interferometer of the positron
was damaged, and hence that the positron might reach detector D+ to
meet the post-selection condition.

• Nw(e−
NI) = 0. With the same reasoning as for the non-intersecting arm of

the positron, there should be no electron detected in the non-intersecting
arm.

• Nw(e−
I ) = 1. As a symmetric case to the intersecting arm of the positron,

the electron should occupy this arm, otherwise one cannot explain why
the positron reached detector D+. But then, if both the electron and
the positron were in the intersecting arms of their interferometers, anni-
hilation must have occurred. That contradicts one of the post-selection
conditions of the experiment.
But wait! We mixed completely different questions here. Remember that
the weak value of the product of two operators is not equal to the product
of the weak values. The questions as to whether the electron occupied the
intersecting arm or the positron occupied the intersecting arm are different
from the question: Did both the electron and the positron occupy their
respective intersecting arms at the same time? The answer to the latter
is the pair-occupation value below.

• Nw(e+
I , e−

I ) = 0. Here the weak value satisfies our expectations – both the
electron and the positron did not occupy the intersecting arms at the same
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time. One must keep in mind that the weak values represent counterfac-
tual measurements. Although the weak values can be measured together,
one cannot conduct the experiments that measure these (‘strong’) values
simultaneously. That is why the two single-particle occupation numbers
do not comply with the pair occupation value.

• Nw(e+
NI, e

−
I ) = 1. There is a particle pair in the non-intersecting arm of

the positron and the intersecting arm of the electron. This is because the
electron ‘collapsed’ to the intersecting arm, and forced the positron to
collapse to the other arm. In this configuration, no annihilation will occur
and the two particles will be detected in their D detectors – as required
by the post-selection condition.

• Nw(e+
I , e−

NI) = 1. The symmetric measurement is also true. If one tries
to look for the positron in the intersecting arm and the electron in the
non-intersecting arm, they will be found there with certainty.
Note the peculiar effect of post-selection: it does not matter whether one
(strongly) measures the intersecting arm of the electron and the non-
intersecting arm of the positron, or vice versa. If the post-selection con-
dition is met at the end, then either measurement will find the pair with
probability 1!
Now, if one recalls outcome (a) on p. 288, the weak value of the sum of
two operators is the sum of their weak values. Summing the weak values
of the pair occupation numbers gives the paradoxical result that there are
2 pairs of particles in the interferometers!
Luckily, the mathematics converges with the fourth pair occupation num-
ber below.

• Nw(e+
NI, e

−
NI) = −1. The pair occupation number of the two non-intersect-

ing arms is −1. What does that mean?
First of all, it settles the counting problem for the number of pairs in
the interferometers. The sum of all four possible pairs is now one, which
is consistent with the fact that there is only one pair of particles in the
interferometer.
But still, what does it mean to have a minus-one pair of particles in the
non-intersecting arms? Bear in mind that a measurement of pair occu-
pation number is different from two measurements, one for each of the
particles. The measurement must look for the presence of the pair with-
out being able to tell the presence of each particle. One such measurement
could be putting the two particles in sealed boxes, then bringing the two
boxes close enough to each other, and letting the electrostatic force pull
the boxes even closer together.
In such an experiment, a minus-one pair of particles will manifest itself
by the repulsion of the boxes, instead of the boxes being attracted in the
usual case (Fig. 15.4). Of course, since the measurement is weak, the pair
of boxes will move only slightly – and that movement will not be enough
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Fig. 15.4. Weak measurement of a ‘minus-one’ pair of particles

to conclude a firm result. But repeating the experiment with many such
pairs will give an average movement away from each other.
Resch et al. [8] performed a quantum optics experiment to realize an-
other weak measurement problem. In their setup, a weak measurement
was supposed to find a ‘minus-one particle’. They used a tilted glass flat
to weakly measure the existence of a particle: a normal particle, travers-
ing the flat, should displace the beam slightly (as in Fig 15.5). In order
to achieve a weak measurement, the displacement must be substantially
smaller than the width of the beam. In their experiment, the existence
of a minus-one particle was manifested by a negative displacement of the
beam. The group is now working on a realization of Hardy’s paradox with
weak measurement using quantum optics.
One should remember that there is no electron in the non-intersecting
arm [Nw(e−

NI) = 0], but still, there is one electron–positron pair where
the positron is in the intersecting arm and the electron is in the non-
intersecting arm [Nw(e+

I , e−
NI) = 1]. How can these two statements be

valid given the weak value summation rule?
The answer lies in the minus-one pair in the non-intersecting arms. When
this pair is taken into account, it cancels the plus-one pair mentioned
above, bringing the total number of electrons in the non-intersecting arm
to zero:

Nw(e−
NI) = Nw(e+

I , e−
NI) + Nw(e+

NI, e
−
NI) = 1− 1 = 0 . (15.45)

Fig. 15.5. An optical weak measurement of a particle
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15.7 Conclusion

In this chapter the concepts of weak measurement and weak values were used
to resolve the paradox raised by Hardy. As opposed to the orthodox analysis
of the conundrum, which reached a dead end and labeled some questions
as ‘unaskable’, the weak values allow us to give proper answers to these
questions, along with the new possibilities of simultaneously measuring non-
commuting variables, simultaneously measuring the results of counterfactual
experiments, and revealing a negative number of particles.

The concepts of weak measurement and weak values arise from the two-
vector formalism. The two-vector is a strict interpretation of quantum me-
chanics. As such, it cannot lead to experimental results that depart from
the orthodox quantum analysis. Nonetheless, it has proved to be a source of
ingenious ideas, paradoxes and insights.
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16 Non-Commutative Quantum Geometry:
A Reappraisal of the Bohm Approach
to Quantum Theory

B.J. Hiley

In this paper we trace the mathematical origins of the wave and particle
aspects of quantum phenomena to the symplectic symmetry, Sp(2n). This
symmetry is shared by both classical mechanics and quantum mechanics. We
show how the quantum formalism appears in the covering space of the sym-
plectic group. In the quadratic Hamiltonian approximation, it is the covering
metaplectic group, Mp(2n), that gives the Schrödinger equation directly. As
is well known, it is the generalisation to all Hamiltonians, to Ham(2n), that
presents mathematical difficulties. Recently, de Gosson has shown how to
derive the Schrödinger equation even in this case. Our approach is to ad-
dress the problem through the non-commutative algebraic approach, which
has its origin in the work of Emch. We show how the Schrödinger equation
and its dual can be expressed in a totally algebraic form that involves both
the commutator and the anticommutator (or Jordon product). We show that
the resulting two equations project directly into the equations forming the
basis of the Bohm interpretation. In fact we can regard the Bohm approach
as providing a way to construct shadow manifolds expected from the ideas
of non-commutative geometry. Finally we discuss some of the consequences
that follow from this mathematical structure.

16.1 Introduction

I want to use this opportunity to review the new developments that have
taken place since the appearance of the book The Undivided Universe which
I completed with David Bohm just before he died (Bohm and Hiley 1987,
1993). In some of the literature, this approach has been known as the de
Broglie–Bohm approach or, more recently, as Bohmian mechanics. But it
should be noted that discussions using these names sometimes differ in im-
portant respects from what Bohm and I had in mind when we wrote our
book. I do not want to go into these differences here as I would prefer to
go directly to the new developments that have emerged from a fusion of my
own ideas (Brown and Hiley 2000, Hiley 2001, 2002 & 2003) with those of de
Gosson (2001). This work throws a very different light on the formalism first
proposed by Bohm (1952). In this paper I would like to summarise the main
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developments that have occurred and to explain how I now see the Bohm
approach.

I want to start by recalling some of the key steps in Schrödinger’s original
attempt to derive his equation from classical physics. Of course he failed
to provide a mathematically ‘clean’ derivation, as he himself acknowledged
in his original paper. However, it has been realised for some time now that
it is possible to derive the Schrödinger equation rigorously from classical
symplectomorphisms by lifting the classical phase space behaviour onto a
covering space, provided the Hamiltonian is up to quadratic in position and
momentum (see Guillemin and Sternberg 1990 and de Gosson 2001). It this
lifting process that enables the wave and particle aspects to be described
in a united formalism. In effect, the particle properties are described on the
underlying phase space while the wave properties appear at the level of the
covering space. A summary of these ideas will be discussed in Sect. 16.2.

The lift onto a more generalised covering space, Ham(2n), has presented
considerable mathematical difficulties (see Guillemin and Sternberg 1990).
De Gosson (2001) has shown recently how these difficulties can be avoided
and the Schrödinger equation can be derived rigorously for all Hamiltonians.
In Sect. 16.3, I will describe how the mathematical difficulties of Ham(2n)
can also be avoided by using some of the ideas that are available from non-
commutative geometry. This has meant applying the purely algebraic ap-
proach to quantum mechanics using the ideas detailed in Emch (1972). In
more modern terms, this exploits the properties of the symplectic Clifford
algebra and uses the less well-known structure of the symplectic spinor (see
Crumeyrolle 1990). Because this algebraic structure is non-commutative it
is not possible to obtain a unique underlying phase space, as one can from
a commutative structure. What one is forced to do is to construct so-called
shadow manifolds and one such manifold is the Bohm phase space. Here we
will see the precise reason for the appearance of the quantum potential, which
some physicists regard as ad hoc. It turns out that its appearance is a direct
consequence of projecting the non-commutative algebraic structure onto a
shadow manifold.

In Sect. 16.4, we show that (infinitely) many shadow phase spaces can be
constructed, each with their own quantum potential. Thus it is possible to
obtain a Bohm approach in the momentum representation, so removing the
criticism that the original proposals of Bohm produced an asymmetry that
is not in the original formalism. Our work shows that the Bohm approach
is deeply embedded in the standard formalism and simply provides an al-
ternative perspective to it. What Bohm does is simply choose the position
representation to be special and develops the interpretation on that basis. I
believe our work shows that there are no scientific grounds for arguing that
the Bohm interpretation is in some way fundamentally flawed. It is simply
another way of looking at the same formalism. We conclude by discussing the
consequences of this new way of looking at the Bohm interpretation.
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16.2 The Schrödinger Equation

To obtain his equation, Schrödinger (1926) started with the time independent
classical Hamiltonian–Jacobi equation

H(r,∇S) = E , (16.1)

where S is the classical action. Schrödinger then wrote S = K lnψ so that the
Hamilton–Jacobi equation for a particle in a classical potential V becomes

(∇ψ)2 − 2m

K
(E − V )ψ2 = 0 . (16.2)

To obtain the wave equation from (16.2), Schrödinger assumed that H was a
quadratic function in ψ and its derivatives. He then performed the variation

δJ = δ
∫ ∫ ∫

dxdy dz

[
(∇ψ)2 − 2m

K
(E + V )ψ2

]
= 0 .

This immediately gives the Schrödinger equation for a particle with con-
stant energy in a classical potential V . Of course, it was not clear even to
Schrödinger what this variation means because he writes in a footnote: “I
realise that this formulation in not unambiguous” (Schrödinger 1926).

Thus we see that historically the Hamilton–Jacobi equation played an
important role in leading to the Schrödinger equation. The Hamilton–Jacobi
equation also plays a key role in the Bohm interpretation, which we shall
discuss in Sect. 16.3. The main question that I want to raise here is whether we
can derive the Schrödinger equation from the classical formalism in a rigorous
way. I should say that this work was partially motivated by Polkinghorne’s
remarks that this equation “came out of Schrödinger’s head” (Polkinghorne
2002).

16.2.1 Symplectic Symmetries of Classical Mechanics

To show how we can derive the Schrödinger equation from classical mechanics
let us first recall how the symplectic group arises in classical mechanics. We
begin with Hamilton’s equations of motion, which can be written succinctly
in the form

d
dt

(x, p) = XH(x, p) , (16.3)

where XH = (∇pH,−∇xH). By solving these equations we can write the
dynamics in the form

(x, p) = ft,t0(x0, p0) , (16.4)

where ft,t0 is a symplectomorphism. Infinitesimal symplectomorphisms st,t0

satisfy the relation
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s̃Js = J , J =
(

0 1
−1 0

)
.

In practice these can be most easily found, not by solving Hamilton’s equation
of motion, but by solving the corresponding Hamilton–Jacobi equation

∂S

∂t
+ H(r,∇S) = 0 ,

which for a particle in a classical potential V (r, t) takes the form

∂S

∂t
+

(∇S)2

2m
+ V = 0 . (16.5)

We now illustrate how this works for a free particle in one dimension. We
first solve the Hamilton–Jacobi equation and find

S(x, x0, t, t0) =
m(x− x0)2

2(t− t0)
, (16.6)

with p = ∂S/∂x and p0 = −∂S/∂x0. It is then easy to show that

x = x0 +
(

t− t0
m

)
p0 , p = p0 , ft,t0 =

⎛⎝ 1
t− t0

m
0 1

⎞⎠ . (16.7)

We can also easily verify that ft,t0 is a symplectic matrix.
We can carry through the same procedure for the one-dimensional har-

monic oscillator using the function

SHO =
mω

2 sinωt

[(
x2 + x2

0
)
cos ωt− 2xx0

]
, (16.8)

to obtain the well-known equation of motion. In this way we see how
S(r, r0, t, t0) generates the classical motion.

16.2.2 Ray Optics

In order to see why the symplectic group plays a key role in the derivation of
a wave equation from particle mechanics, let me briefly recall how geometric
optics is also based on this group structure. Recall Fermat’s principle in which
the equation of a light ray can be derived from the variation of the optical
path ∫

ndσ =
∫

n
√

1 + ẋ2 + ẏ2 dz =
∫

Ldz , (16.9)

where we have written
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dσ =
√

dx2 + dy2 + dz2 =

[
1 +
(

dx

dz

)2

+
(

dy

dz

)2
]1/2

=
√

1 + ẋ2 + ẏ2 dz ,

so that

L =
√

1 + ẋ2 + ẏ2 .

Obtaining the conjugate momenta p = dL/dz from L, we find

px = n
ẋ√

1 + ẋ2 + ẏ2
, py = n

ẏ√
1 + ẋ2 + ẏ2

,

so that the equivalent Hamiltonian is

H = pxẋ + py ẏ − L = −
√

n2 − p2
x − p2

y . (16.10)

Hamilton’s equations of motion are then

ẋ =
∂H

∂px
, ṗx = −∂H

∂x
, ẏ =

∂H

∂py
, ṗy = −∂H

∂y
.

The equation corresponding to the Hamilton–Jacobi equation (16.1) is then

∂S

∂z
−

√
n2 −

(
∂S

∂x

)2

−
(

∂S

∂y

)2

= 0 , (∇S)2 − n2 = 0 , (16.11)

which is just the well-known eikonal equation.

θ
x

z

Light Ray

z-axis

Fig. 16.1. Coordinates (x, p = nθ) of light ray

To identify the coordinates (x, px), consider a ray that travels in the x–z
plane, where x is the height of the ray above the x-axis at the point z. Hence,
p = nθ, where θ is the angle the ray makes with the z-axis (see Fig. 16.1).

In terms of these coordinates, the equation of the ray can also be written
as a symplectomorphism, which we can write in the form(

x
p

)
=
(

A B
C D

)(
x0
p0

)
. (16.12)
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Then, for a ray travelling in uniform medium of refractive index n, we have(
1 d
0 1

)
, d =

∆t

n
, (16.13)

while for a ray passing through a boundary n1 → n2, we have(
1 0
−P 1

)
, P =

n1 − n2

R
.

Then for a lens, the symplectomorphism is given by(
1 u
0 1

)(
1 0
−1/f 1

)(
1 v
0 1

)
=
(

1− u/f u + v − uv/f
−1/f 1− v/f

)
.

If the planes are conjugate, the upper off-diagonal element is zero. From this
we can find the thin lens formula

1
u

+
1
v

=
1
f

.

I derive it in this manner just to stress that underlying ray optics and classical
mechanics is the symplectic group. I now want to make use of this fact to
motivate the notion of a covering space, which we will use to describe the
wave properties generated by both types of process.

16.2.3 Waves and Rays from Huygens’s Construction

Let us now recall how a series of wave fronts is related to the eikonal equation.
Consider a wave front given by the equation ct = S(x, y, z), so that

cdt = dS =
∂S

∂x
dx +

∂S

∂y
dy +

∂S

∂z
dz . (16.14)

Let the ray P0P perpendicular to the wave fronts be described by direction
cosines α = ∂x/∂σ, β = ∂y/∂σ, and γ = ∂z/∂σ, with α2 + β2 + γ2 = 1, so
that

Nα =
∂S

∂x
, Nβ =

∂S

∂y
, Nγ =

∂S

∂z
.

Substituting into (16.14), we find

cdt = N(α dx + β dy + γ dz)

= N

[(
∂x

∂σ

)2

+
(

∂y

∂σ

)2

+
(

∂z

∂σ

)2
]

dσ = N dσ .

Now if the light has velocity v in a refractive medium, then dσ = vdt and
n = c/v, so that cdt = ndσ and N = n. Since α2 + β2 + γ2 = 1, we have

1
n2

(
∂S

∂x

)2

+
1
n2

(
∂S

∂y

)2

+
1
n2

(
∂S

∂z

)2

= 1 ,

which is just the eikonal equation (16.11).
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16.2.4 The Wave Equation

In the optical case considered in this section, we begin to see how rays and
waves are related. What remains to be done is to describe how the phase
changes with time. To begin with, note that the solution of the eikonal equa-
tion is

S(P0, P ) =
n

2
(x− x0)2

t− t0
, (16.15)

which should be compared with the solution of the Hamilton–Jacobi equation
for the free particle given in (16.6). Here this is simply the optical path length
between P0 and P . This will produce the phase change exp

[
2πikS(P0, P )

]
,

where k = 1/λ, λ being the wavelength of the light. As the light travels along
its path, the amplitude decreases by some factor depending on the length of
the path, so that the wave will be modulated by

A(P0, P ) exp
[
2πikS(P0, P )

]
.

If initially we have the wave ψ0(x0), then the contribution to the wave at x
from the secondary source at x0 will be

ψ(x) = A(x, x0) exp
[
2πikS(x, x0)

]
ψ0(x0) .

If we now assume that the Huygens construction is valid, we get

ψ(x) =
∫

A(x, x0) exp
[
2πikS(x, x0)

]
ψ0(x0) dx0 . (16.16)

[Note that the analysis has been shortened here. In fact, there is a slight
complication, which is fully discussed in Guillemin and Sternberg (1990).
This does not affect our conclusions.]

Feynman (1948) shows that (16.16) is exact for free particles provided we
use S(x, x0) as defined in (16.6). Does this mean that we are returning to
the Feynman path integral approach? Not according to de Gosson (2001)! He
argues that, provided we accept the de Broglie matter wave hypothesis, the
Schrödinger equation emerges from classical mechanics not only for quadratic
Hamiltonians, but for all Hamiltonians. Furthermore, the emergence is math-
ematically exact. To explain his argument here would take us too far from
the main point I am making in this paper, so I will refer the interested reader
to his excellent book. For the purposes of this paper, the point I want to
bring out is the connection of this work to the Bohm interpretation.

16.3 Covering Groups

16.3.1 The Symplectic and Metaplectic Groups

From the mathematical point of view, what the Huygens construction has
done is to lift the Hamiltonian flow from the classical phase space onto the
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covering space. For quadratic Hamiltons this generates the metaplectic group,
which is the double cover of the symplectic group. (For more details see
Guillemin and Sternberg 1978, 1990 and de Gosson 2001).

For the purposes of this paper let us define an operator US by

(USψ)(x) = A

∫
exp
[
2πikS(x, x0)

]
ψ0(x0) dx0 . (16.17)

Then obviously,[
(US1 ◦ US2)ψ

]
(x) = A

∫
exp
{

2πik
[
S1(x, x0) + S2(x, x0)

]}
ψ0(x0) dx0 ,

so that

US1 ◦ US2 = US1+S2 . (16.18)

Thus the covering clearly has a group structure. If we take the special case
where S(x, x0) is defined by

S(x, x0) =
1

2B

(
Dx2 − 2xx0 + Ax2

0
)

, (16.19)

we find that that this generates the metaplectic group, Mp(2n), which double
covers the symplectic group generated by

s =
(

A B
C D

)
,

in 2n-dimensional phase space. The matrices A, B, C and D satisfy the
relations:

• ÃC and D̃B are symmetric, ÃD − C̃D = 1,
• AB̃ and CD̃ are symmetric, AD̃ −BC̃ = 1,
• DC̃ and AB̃ are symmetric, DÃ− CB̃ = 1,

where the tilde signifies the transpose of the matrix.

16.3.2 Schrödinger Equation

One can find in the metaplectic group families of operators U(t) ∈ Mp(2n)
that form a one-parameter subgroup satisfying U(t1)U(t2) = U(t1 + t2).
Corresponding to this one-parameter group there will be a one-parameter
group of matrices M(t) ∈ Sp(2n). Since M depends on t, we can always
write dM(0)/dt = K, so that M(t) = etK . Now for small |t|, we can uniquely
recover U(t) from M(t). Once we know U(t) for small |t|, we know it for all
t because U(t) = U(t/n)n. Since dU/dt is a skew adjoint operator, we can
write dU/dt = −iH, where H is a self-adjoint operator. Thus U(t) satisfies
the Schrödinger-type equation
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dU

dt
= −iHU . (16.20)

By examining the details of the matrix ft,t0 given in (16.7), it is not difficult
to show that t is time. This approach is exact for Hamiltonians that are up
to quadratic in x and p. This is clearly shown in (16.19).

Before going on to explain how to generalise this approach to all Hamil-
tonians, let us just display the connection more explicitly for the free particle
and the one-dimensional harmonic oscillator. In classical mechanics, we have
the Hamilton–Jacobi equation

∂S

∂t
+ H(r,∇S) = 0 .

The solution S(r, r0, t, t0) of this equation generates the classical motion.
Thus, for the free particle, we find

SFP =
m(r − r0)2

t− t0
, (16.21)

while the generating function for the harmonic oscillator is

SHO =
mω

2 sinωt

[(
x2 + x2

0
)
cos ωt− 2xx0

]
. (16.22)

Both of these are special cases of the quadratic expression shown in (16.19).

Phase space
(x, p)

(x0, p0)

Ψ(x) dx

Ψ0(x0) dx0

st

Ut

Covering space

Fig. 16.2. The relation between the classical phase space and the covering space
of quantum mechanics

Now let us compare these equations with the solutions of the Schrödinger
equation (16.20), which we now write in the more familiar form

i
∂ψ

∂t
= Hψ .

The Green’s function solution, G(r, r0, t, t0), of Schrödinger’s equation prop-
agates the quantum motion. For the free particle, the Green’s function is
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GFP ∝ exp
[
i
m(r − r0)2

t− t0

]
= exp

[
iSFP(r, r0)

]
, (16.23)

while the harmonic oscillator gives

GHO ∝ exp
{

imω

2 sinωt

[(
x2 − x2

0
)
cos ωt− 2xx0

]}
= exp

[
iSHO(r, r0)

]
.

(16.24)

Note here that the Green’s functions are just the lift of the classical Hamil-
tonian flow and are clearly directly related to the representation of the oper-
ators in the metaplectic group Mp(2n). Figure 16.2 shows an image of how
the classical phase space is covered by the space in which the metaplectic
group operates.

16.3.3 Symplectic Spinors

The object that takes the place of the coordinates (x, p) of classical phase
space is the symplectic spinor ψ(x)

√
dx. This is also known as a half-form. It

is simply the symplectic analogue of the Pauli spinor. The root of dx appears
because of the normalisation condition that holds both in electromagnetism
and in quantum mechanics. That is, we must have∫

|ψ(x)|2dx =
∫
|ψ0(x0)|2dx0 . (16.25)

Thus (16.16) should be written in the form

ψ(x)
√

dx = A

∫
exp
[
2πikS(x, x0)

]
ψ0(x0)

√
dx0 . (16.26)

If we substitute (16.26) into the normalisation condition (16.25), we find that
A = e∓iπ/4|det λB|−1/2. With this result, we can now show how the double
cover arises.

To this end, first notice that, when A = 0, B = 1, C = −1, D = 0,
the transformation becomes the Fourier transform (x, p) = F (x0, p0). This
corresponds to a rotation through π/2 in the phase space. Thus(

x
p

)
=
(

0 1
−1 0

)(
x0
p0

)
,

so that x0 → −p and p0 → x. Clearly we need to apply the Fourier transfor-
mation four times to return to our starting point, i.e., four lots of π/2 gives
2π! Thus since F (Ff)(x) = f(−x), we get F 4 = 1.

Now let us see what happens when we go to the double cover. The meta-
plectic group element corresponding to the Fourier transformation on the
phase space is
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UF ψ(x) = e−πi/4|k|1/2
∫

exp
[
− 2πikxx0

]
ψ0(x0) dx0 , (16.27)

so that UF = e−πi/4F . This gives immediately

(UF )4 =
(
e−πi/4F

)4
= −F . (16.28)

This means that we have to go through another four operations with the
group element (16.26) to get back to where we started. This is a well-known
property of any double cover, which has physical consequences demonstrated
by the Guoy effect (see Carpenter 1959).

16.3.4 Heisenberg Algebra and the Metaplectic Group

In this section, I will show how these ideas are contained in the Heisenberg
group and its corresponding Lie algebra, which can also provide an alternative
and perhaps more formal way of showing the equivalence of the Schrödinger
and Heisenberg pictures which we will exploit later.

Recall that the Heisenberg algebra is generated by {1, Q, P}, with

[Q, P ] = i .

It is not difficult to show that the enveloping algebra of the Heisenberg al-
gebra is part of a larger structure known in the mathematics literature as
the symplectic Clifford algebra (see Bacry and Boon 1987, and Crumeyrolle
1990). The reason for this name is that it is the symplectic analogue of the
more familiar orthogonal Clifford algebra, which is central to the Dirac theory
of the electron. Just as there is a double cover of the orthogonal group which
gives rise to the well known Pauli and Dirac spinors, the symplectic group
has a double cover known as the metaplectic group which in turn gives rise
to symplectic spinors discussed in the previous section. It is these symplectic
spinors that play a central role in this paper.

The corresponding group, the Heisenberg group, is spanned by the ele-
ments

H(α, β, ε) = exp(αQ + βP + εZ) , for Z ∈ R , (16.29)

while the metaplectic group (the corresponding Clifford group of the sym-
plectic structure) is spanned by the elements

M(α, β, ε) = exp
[
αQ2 + βP 2 + ε(QP + PQ)

]
. (16.30)

The infinitesimal generators of this group are

L0 =
1
4
[
Q2 + P 2] , L1 = −1

4
[
QP + PQ

]
, L2 = −1

4
[
Q2 − P 2] ,
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producing a Lie algebra[
L0, L1

]
= iL2 ,

[
L1, L2

]
= −iL0 ,

[
L2, L0

]
= iL1 .

Clearly, this is isomorphic to the symplectic Lie algebra Sp(4). As I have
shown elsewhere, we can extend the symplectic Clifford algebra so that it
contains primitive idempotents (Hiley 2001a). Then it is possible to construct
the minimal ideals which are the algebraic equivalent of the symplectic spinors
of the metaplectic group, as we will show in Sect. 16.5. We will also discuss
the relevance of the algebraic spinors in Sect. 16.5.

16.4 Quantum Mechanics and the Bohm Approach

16.4.1 Summary of the Bohm Approach

We now want to consider what all this has to do with the Bohm (1952)
approach. (For a more up to date account of this approach see Bohm and
Hiley 1993 and Holland 1993). First recall that the two equations defining
the Bohm approach emerge from the Schrödinger equation by simply writing
the wave function in polar form: ψ(r, t) = R(r, t) exp

[
iS(r, t)

]
. Then the

resulting equation is split into its real and imaginary parts and we find

i
∂P

∂t
+∇(jP ) = 0 , (16.31)

which gives us a conservation of probability equation. The real part of the
Schrödinger equation gives

∂S

∂t
+

(∇S)2

2m
− 1

2m

∇2R

R
+ V = 0 . (16.32)

This equation resembles the Hamilton–Jacobi equation except that it contains
an extra term

Q =
1

2m

∇2R

R
,

which has been called the quantum potential since it is this term that dis-
tinguishes classical mechanics from quantum mechanics. If we identify ∇S
with the momentum and regard Q as a new quality of energy only playing
a role in quantum processes, then we can regard (16.32) as an expression of
the conservation of energy.

It is this term that has provoked some hostile criticism to the Bohm
approach. Heisenberg (1958) himself called it ad hoc, a sentiment that is still
repeated in Polkinghorne (2002). Yet there is nothing ad hoc about it. It is
a direct consequence of simply rewriting the Schrödinger equation in its real
and imaginary parts under polar decomposition of the wave function. Even
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Dürr, Goldstein and Zanghi (1996) who are strong supporters of ‘Bohmian
mechanics’ seem to find “a serious flaw in the quantum potential approach,”
but I have failed to understand their specific objections, particularly as they
argue that the approach is “completely defined by the Schrödinger equation.”

I find the fact that (16.32) emerges from the Schrödinger equation far
from surprising given the history of the origin of this equation. Indeed we
can see even more clearly how the quantum potential is a necessary feature
of the description if we follow the suggestion of de Gosson (1998, 2001) and
introduce what he calls the Bohmian defined by

Hψ = H + Qψ .

If this is inserted into the Hamilton–Jacobi equation written in the form

∂S

∂t
+ Hψ(r,∇rS) = 0 , (16.33)

then one can show that there exists a symplectomorphism fψ
t,t0 given by(

rψ(t),pψ(t)
)

= fψ
t,t0(r0,p0), which can be written in the form

drψ

dt
= ∇pHψ (16.34)

and

dpψ

dt
= −∇rHψ = −∇r(V + Qψ) . (16.35)

Equation (16.34) is simply the guidance condition p = ∇S, from which the
trajectories are calculated, written in an unusual form. Equation (16.35) is the
generalisation of Newton’s equation of motion where the classical potential
is supplemented with the quantum potential. This equation ensures that the
momentum is always conserved.

If we write

S
(
rψ(t), t

)
= S0(x0) +

∫ t

0
(p·dr −Hψdt′) ,

then it is not difficult to show that

ψ
(
rψ(t), t

)
|dnrψ|1/2 = exp

[
i
�
S
(
rψ(t), t

)]
ψ0(x0)|dnx0|1/2 , (16.36)

where ψ
(
rψ(t), t

)
is a solution of Schrödinger’s equation. For proof of these

results, see de Gosson (1998). This demonstrates the key role the quantum
potential plays in the relation between the symplectic space and its double
cover, as we will elaborate further below.

Now we are in a position to clarify the relation between the phase space
and its covering space. We can regard the Schrödinger equation as describing
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the time evolution of the flow in the quantum system in the covering space.
Then, for each initial point of the covering space, we can project a distribu-
tion of initial points on the phase space lying immediately below it. As the
Schrödinger equation develops, a series of trajectories unfold in the underlying
manifold. These determine classical-type symplectic flows, which are defined
by the Bohmian. Thus we see that the quantum potential plays an essential
role in the mathematical relationship between the phase space and the cor-
responding covering space. Furthermore, it is the property of covering spaces
that ensures that the underlying trajectories do not cross, thus explaining a
well-known property of the Bohm trajectories. There is therefore nothing ad
hoc or artificial about the Bohm flows. They are a necessary structure of the
quantum formalism when looked at in terms of the underlying geometry. We
will look at this result in a new way in the next section.

Before moving on, I would like to consider several features of the Bohm
approach that are sometimes considered to be ‘unsatisfactory’. Firstly, the
Bohm approach seems to depend heavily on the Schrödinger picture and to-
tally ignores the Heisenberg picture. Yet the claim is that the Bohm approach
uses only the standard formalism. Where then are things like the quantum
potential ‘hiding’ in the Heisenberg picture? It must be there somewhere
simply because the matrix mechanics gives a mathematically equivalent de-
scription, at least for a finite number of degrees of freedom. We will examine
this question in the next section.

A further question, which essentially has it roots in the first question,
asks why the position representation is taken as basic. It seems as if it com-
pletely ignores the complementary momentum representation. Bohm (1953)
did address this question and concluded that one could not build a satisfac-
tory momentum version because of problems with the mathematics. However,
this is not so, as we will show later.

The third difficulty is to do with the uncertainty principle. How is it
possible to build a phase space in terms of (x, p) and yet satisfy the uncer-
tainty principle and avoid the no-go theorems of Gleason (1957), and Kochen
and Specker (1967)? This has been philosophically resolved by arguing for
context dependence. But there is a very simple mathematical reason why
there is no problem. The momentum used in Bohm’s approach using the x-
representation is not the eigenvalue of the momentum operator. It turns out
to be only the real part of the momentum operator, as we show in (16.55).
Thus what Bohm is saying is that the variables (beables) associated with
the particle are not the simultaneous eigenvalues of the position and mo-
mentum operators. Indeed, the x-coordinate is the eigenvalue of the position
operator, but the Bohm momentum is not the eigenvalue of the momentum
operator. The eigenvalues are what you find when you measure a quantity.
Measurement is participatory and that is what makes the context depen-
dence inevitable. Let me try to bring out the mathematical aspect of these
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things and show how they are related to the non-commutative structure of
the quantum formalism.

16.4.2 Non-Commutative Algebra and Phase Space

I will try to bring out the ideas in a simple way. In classical mechanics,
position and momentum are always well defined so that the concept of a
trajectory in phase space presents no difficulty. Thus the picture shown in
Fig. 16.3 is unremarkable.

p

x

p

x

Fig. 16.3. Classical trajectory in phase space

When we come to quantum mechanics, we have serious problems if we
assume the properties of particles are only described by the eigenvalues of
operators. In the case of the x-representation, we can say the particle has a
well-defined position, but its momentum is totally unknown. On the other
hand in the p-representation, the momentum is exactly defined but the po-
sition is totally unknown. The appropriate representation is defined by the
context and thus the context determines which operator is diagonal. In a
position measurement, we must diagonalise the position operator. Thus, for
a simple one-dimensional discrete space, we obtain

S1XS−1
1 = Xdia =

⎛⎜⎝x1
x2

. . .

⎞⎟⎠ . (16.37)

We then find the particle in one of the boxes in Fig. 16.4. We can say nothing
about its momentum.

x 1 x 2 x 3 x 4 . . . . . . . .

Fig. 16.4. Position measurement in quantum theory

On the other hand, if we perform a momentum measurement, we must
diagonalise the momentum operator
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S2PS−1
2 = Pdia =

⎛⎜⎝p1
p2

. . .

⎞⎟⎠ . (16.38)

This means that we can only represent the particle in one of the p-boxes as
shown in Fig. 16.5, but can say nothing about where it is.

p 1 p 2 p 3 p 4 . . . . . . . .

Fig. 16.5. Momentum measurement in quantum theory

Because of non-commutation, S1 �= S2, so we can never represent the
particle on a phase space defined in terms of the eigenvalues of the X- and
P -operators. This is essentially the implication of the work of Kochen and
Specker (1967).

The problem arises from the fact that we have given primary physical
relevance to the eigenvalues and not the operator algebra. Rather than using
eigenvalues, we should let the algebra determine the phase space. We should
not start with something we cannot observe (i.e., the phase space) and then
build a structure up on that. The key question is thus: Is it possible to start
with the algebra of functions and then deduce the properties of the underlying
space, if indeed there is one?

16.4.3 Construction of Phase Spaces

The traditional way of building a theory is to start with a topological or a
metric underlying space and then to construct on it functions that can form
an algebra on that space. However, Gel’fand has shown us that it is possible
to start from a commutative algebra of functions and then to abstract any
underlying space (for details see Demaret et al. 1997). For example, if we have
a commutative algebra of regular functions, C∞(M), then the underlying
structure is the affine space over the complex numbers. In this space the
points are the maximal ideals of the algebra C∞(M). If the algebra is a
commutative C∗ algebra, then we can abstract out a compact topological
space, and so on.

The algebraic structure of observables in quantum mechanics therefore
seems to offer the possibility of supplying a way to construct an under-
lying phase space. The problem is that the algebra of observables is non-
commutative. With a non-commutative algebra things are not as straightfor-
ward as in the commutative case. It is not possible to find a unique underlying
space. The best we can do is to construct ‘shadow’ spaces. Indeed, this is just
what the above discrete structure indicates. But here we have only presented
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‘half’ the space. We have no way of representing the complementary property.
Thus we can either construct a position space in which there is no momen-
tum specified or specify a momentum space in which case there is no position
defined. But we can do more than this. We can actually construct shadow
phase spaces, of which the Bohm approach provides one such space. In the
rest of this paper, I will show exactly how we can construct such a phase
space starting from the algebra.

16.5 The Algebraic Approach

16.5.1 The Extended Heisenberg Algebra

We have already seen in the last section that quantum mechanics ‘lives’ in the
covering space of symplectomorphisms. We now argue that a more general
way to look at this covering space is in terms of the Heisenberg algebra or at
least, a generalisation of it. The equation of motion in this space is normally
taken to be the Heisenberg equation

i
dÂ

dt
+
[
Ĥ, Â

]
= 0 . (16.39)

However, we will find that this is not the way to proceed. We are not simply
interested in looking at the time development of the operators because we
are still left with the wave function, ψ(t0), ‘frozen’ in time and not part of
the algebra. We want to retain the time development in the wave function
but we need somehow to ‘put’ the wave function into the algebra. To do this
we must go to a more general description of the notion of a state. The way
to do this is to use the density operator even in the case of a pure state. For
the purposes of this paper it is not necessary to consider mixed states, but
the density operator will nevertheless be our primary concern.

Now we know that the density operator can be represented in a Hilbert
space by

ρ̂ = |ψ〉〈ψ| . (16.40)

However, we do not want to use the properties of Hilbert space at present.
This allows us the generalisation we need. In fact we will follow Emch (1972)
and write the density operator as

ρ̂ = ψ̂Lψ̂R , (16.41)

where ψ̂L and ψ̂R are elements of the left and right ideals in the algebra. In
the case of the orthogonal Clifford algebra, one can construct these ideals
with comparative ease, as has been shown in Hiley (2003). What we need to
do is to find a primitive idempotent in the algebra and then build the left
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(right) ideals by simply multiplying from the left (right) using elements of
the algebra.

When we come to the symplectic Clifford (Heisenberg) algebra, we have a
problem. The Heisenberg algebra is nilpotent, which means that the algebra
does not contain any idempotents. This does not present us with an insur-
mountable problem since one can extend the algebra as shown in Frescura
and Hiley (1984) and Hiley (2003). But Dirac (1947) already anticipated the
need for this generalisation. In effect he added an idempotent to the Heisen-
berg algebra when he introduced the notion of a standard ket and standard
bra. These two objects are relatively unfamiliar objects and are not the usual
bra and ket used in everyday physics. They are nevertheless related.

Dirac’s idea was essentially to lift the ordinary ket into the algebra, which
he did by noting that there is no need to write the original ‘bar’ in front of
the angle bracket. Thus | 〉 is replaced by 〉. It is the latter symbol that
Dirac called the standard ket. This enabled him to construct left ideals in
the algebra symbolically, simply because there is no meaning to multiplication
on the right. Conversely, he replaced 〈 | with 〈 to enable the right ideals to
be generated. If we put the standard ket together with the standard bra, 〈,
we have in effect introduced an idempotent. [For an alternative use of these
idempotents see Kauffman (2002 and 2002a).] We can thus write 〉〈= ε. Then
ε2 = ε, establishing that it is an idempotent. Hence we can write

ρ = |ψ〉〈ψ| =⇒ ψ̂〉〈ψ̂ =⇒ ÂεB̂ = ψ̂Lψ̂R , (16.42)

where ψ̂L = Âε is an element of the left ideal. This is the operator equivalent
to the wave function. In the same way, ψ̂R = εB̂ is an element of the right
ideal, which is the operator equivalent to the conjugate wave function. The
left ideal ψ̂L is also called the algebraic symplectic spinor, while the right ideal
ψ̂R is known as the dual symplectic spinor. These objects are representation
free.

In this approach the Heisenberg equation of motion is replaced by two
operator Schrödinger equations:

i
∂ψ̂L

∂t
= Ĥψ̂L , −i

∂ψ̂R

∂t
= ψ̂RĤ . (16.43)

Let me stress again that these equations are representation free. Now if we
take the difference between these two equations, we get

i
∂ρ̂

∂t
+
[
ρ̂, Ĥ
]
− = 0 . (16.44)

This will be recognised as the Liouville equation, but written in terms of
operators. It can be regarded as an equation governing the time evolution of
the amplitude of the process.

The sum of the two equations in (16.43) gives
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i

[(
∂ψ̂L

∂t

)
ψ̂R − ψ̂L

(
∂ψ̂R

∂t

)]
=
[
ρ̂, Ĥ
]
+ . (16.45)

Thus we see that we need both the commutator and the anticommutator to
give a complete description of the content of the Schrödinger equation and its
dual. An interesting argument as to why both equations are needed is given
in Hiley (2001b).

We can considerably simplify this equation if we can polar decompose ψ̂L
and ψ̂R so that we can write

ψ̂L = R̂Û , ψ̂R = Û†R̂ ,

where R̂ is positive definite and Û is unitary. Then we find

i

[(
∂ψ̂L

∂t

)
ψ̂R − ψ̂L

(
∂ψ̂R

∂t

)]
= iR̂

[
∂Û

∂t
Û† − Û

(
∂Û†

∂t

)]
R̂ =

[
ρ̂, Ĥ
]
+ .

(16.46)

Now suppose we write Û = eiŜ , where Ŝ = Ŝ†. This implies

R̂

(
∂Ŝ

∂t

)
R̂ +

1
2
[
ρ̂, Ĥ
]
+ = 0 . (16.47)

If we further assume that
[
R̂, ∂Ŝ/∂t

]
= 0, then this equation simplifies to

ρ̂

(
∂Ŝ

∂t

)
+

1
2
[
ρ̂, Ĥ
]
+ = 0 . (16.48)

We see that this is simply an equation that describes the time development
of the phase operator. Thus we see that the two Schrödinger-type equations
(16.43) are replaced by the two equations (16.44) and (16.48), viz.,

i
∂ρ̂

∂t
+
[
ρ̂, Ĥ
]
− = 0 , ρ̂

(
∂Ŝ

∂t

)
+

1
2
[
ρ̂, Ĥ
]
+ = 0 .

Notice that (16.44) uses the commutator, while (16.48) is expressed in terms
of the anticommutator (or Jordon product). These equations were originally
derived in Brown and Hiley (2000).

16.5.2 Relation to the Bohm Approach

I now want to relate this algebraic approach to the Bohm approach. To bring
out this connection, first note the similarity between the pair of defining
equations (16.44) and (16.48) and the pair of equations that form the basis of
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the Bohm approach, (16.31) and (16.32). The first difference is that equations
(16.44) and (16.48) are operator equations and, as we have remarked earlier,
they are representation free. On the other hand, (16.31) and (16.32) are tied
to a specific representation, namely, the position representation. In fact, as
we show below, (16.44) and (16.48) produce the two Bohm equations if we
go to the x-representation. This may be surprising since (16.32) contains the
quantum potential, whereas (16.48) has nothing that remotely looks like a
quantum potential.

In order to show why these two equations contain the same information,
we need to project (16.44) and (16.48) into a specific representation. We will
first do this in a general representation defined by

Â|a〉 = a|a〉 . (16.49)

Then immediately we find that (16.44) becomes

i
∂P (a)

∂t
−
〈[

Ĥ, ρ̂
]
−
〉

a
= 0 , (16.50)

where P (a) is the probability of finding the particle in |a〉. Thus (16.50) is just
the Liouville equation, which expresses the conservation of probability. This
can be easily shown if we choose the Hamiltonian to be H = p2/2m + V and
replace a by x, i.e., we choose the x-representation. In this representation,
(16.44) becomes identical to the Bohm equation (16.31).

In a general representation, (16.48) becomes

P (a)
∂S(a)

∂t
+

1
2

〈[
Ĥ, ρ̂
]
+

〉
a

= 0 , (16.51)

which is clearly an equation for the time development of the phase equation,
thereby justifying our original claim.

Equation (16.51) looks remarkably similar to (16.32), but again it seems
as if the quantum potential is missing. However, the quantum potential is
actually implicit in the anticommutator. To bring this out, we have to choose
a particular Hamiltonian. For reasons that will become clear, this time we
will choose the Hamiltonian for the harmonic oscillator:

H =
p2

2m
+

Kx2

2
.

Substituting this in (16.51) using the x-representation gives

∂Sx

∂t
+

1
2m

(
∂Sx

∂x

)2

+
Kx2

2
− 1

2mRx

(
∂2R2

∂x2

)
= 0 . (16.52)

We immediately see that the quantum potential has appeared, giving us an
expression for the conservation of energy. If we do the same thing in the
p-representation, we find
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∂Sp

∂t
+

p2

2m
+

K

2

(
∂Sp

∂p

)2

− K

2Rp

(
∂2Rp

∂p2

)
= 0 . (16.53)

A quantum potential appears once again. We can thus construct a Bohm in-
terpretation in the p-representation as well. Here (16.53) is again an expres-
sion for the conservation of energy. We can check this simply by considering
the ground state of the harmonic oscillator and showing that both (16.52)
and (16.53) give the well-known result E = ω/2.

All this shows that we can construct a Bohm interpretation for any repre-
sentation whatsoever. In fact, mathematically, we have not lost the symmetry
between x and p that Heisenberg (1958) and others complain about. The full
symplectic symmetry is still there and shows that the singling out of the
x-representation is not made on mathematical grounds. It is made on other
grounds. Indeed, as Bohm remarked to me once, it seemed more natural to
choose the x-representation because all our experiences are in spacetime. I
would add to this and argue that our measurement instruments separate
different results by positions of pointers, etc. Even digital displays of instru-
ment readings are ultimately displayed in spacetime. Thus in practice we use
spacetime to make the physical properties of any system manifest. Further
details of this approach appear in Hiley (2002).

16.5.3 Detailed Comparisons

In order to interpret (16.48) as a conservation equation, not only do we have
to identify Qx with a new quality of energy, we also have to interpret ∂Sx/∂x
as the momentum, p. This is, of course, just what is sometimes known as
the ‘guidance condition’, which Bohm (1953) himself took as a subsidiary
condition. Notice that, to construct our phase space, we must abandon the
insistence that only the eigenvalues of operators have physical meaning.

Now in the light of the results of Sect. 16.3, we can see how the momentum
relation arises naturally from the classical limit

Sx −→ Scl , p −→ pcl =
∂Scl

∂x
, Q −→ 0 . (16.54)

Since we now have the possibility of a p-representation, we can ask what
replaces the guidance condition? Clearly, (16.53) shows that we must replace
−∂Sp/∂t with x. The resulting equation x = −∂Sp/∂t clearly cannot be
interpreted as a guidance condition and must be regarded as a subsidiary
condition, as originally suggested by Bohm himself (Bohm 1953). We can
see that these conditions mean that we are only using the real parts of the
momentum and position, respectively. In fact, in the x-representation, we
have

Re [ψ∗(x)Pψ(x)]
|ψ(x)|2 =

∂Sx

∂x
= p , (16.55)
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while in the p-representation, we have

Re [ψ∗(p)Xψ(p)]
|ψ(p)|2 = −∂Sp

∂p
= x . (16.56)

The fact that we use the real part in both these expressions should not be too
surprising since, to obtain the Bohm equation (16.32), we had to take the real
part of the Schrödinger equation under polar decomposition. Furthermore, it
is now clear why the quantum potential is not ad hoc but a necessary feature.
It is necessary to ensure that both energy and momentum are conserved. For
example, the kinetic energy used in (16.52) is calculated from the real part
of

1
2m

[
ψ∗(x, t)P̂ψ(x, t)

]2
,

which is clearly not the quantum kinetic energy calculated from

1
2m

ψ∗(x, t)P̂ 2ψ(x, t) .

In fact the difference is simply the quantum potential. Thus the conservation
of energy is just

∂Sx

∂t
+

p2

2m
+

K

2
x2 − 1

2mRx

(
∂2Rx

∂x2

)
= 0 .

In the p-representation, the potential energy which is calculated from the real
part of

[
φ∗(p, t)X̂φ(x, t)

]2 cannot be the total potential energy, which must
be calculated from φ∗(p, t)X̂2φ(x, t). Once again, the difference is taken care
of in the quantum potential Qp. Thus the conservation of energy demands
that we write

∂Sp

∂t
+

p2

2m
+

K

2
x2 − 1

2Rp

(
∂2Rp

∂p2

)
= 0 .

Thus I stress yet again, the quantum potential is a necessity and not ad hoc.
The criticisms made by Heisenberg (1958) and Polkinghorne (2002) are based
on a misunderstanding of the quantum formalism itself.

16.5.4 Shadow Phase Spaces

Now we can see how the Bohm approach can be understood in terms of non-
commutative geometry. If we give primary significance to the algebra of the
operators, then we cannot construct a phase space with the eigenvalues of
the X- and P -operators. This is the position adopted in standard quantum
mechanics. However, we do not have to stop there. We can adopt the Gel’fand
approach and project from the algebra onto shadow phase spaces. Thus in
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the two representations we have discussed, we can construct two different but
related phase spaces, both of which have trajectories as shown in Fig. 16.6.
Of course, these trajectories are just the streamlines of the corresponding
probabilities, as has been shown in detail in Brown and Hiley (2002). In that
paper it is shown that the trajectories are nothing more nor less than the
probability currents. Thus the basic physical premise of the Bohm approach
is simply to assume that, if we retain the notion of a localised particle, then
we can regard the particle as following the streamlines of the probability
current, an assumption that is actually often made in physical problems in
condensed matter physics, particularly in superconductivity problems (see,
for example, Feynman et al. 1965).

p = ℜe ψ∗P̂ψ( )    x = ℜe ψ∗X̂ψ( )

     or

px

Fig. 16.6. Trajectories in two different phase spaces

16.6 Conclusion

In this paper I have tried to bring out the central role of the symplectic
symmetry in both classical and quantum mechanics. Since the algebra of dy-
namical functions in classical mechanics is commutative, there is no need to
distinguish between dynamical operators and their eigenvalues. In quantum
mechanics, on the other hand, the algebra of dynamical operators, which
carry the symplectic symmetry, is non-commutative. This means, in particu-
lar, that we cannot build an x–p phase space out of the eigenvalues of these
operators. Indeed, these eigenvalues do not directly satisfy the symplectic
symmetry. The symmetry of the eigenvalues is enfolded or implicit in the
symplectic symmetry of the operators.

Similarity transformations of the type used in (16.37) and (16.38) show
that each single position eigenvalue is ‘exploded’ into every momentum eigen-
value (and vice versa) under the transformation. This is the source of the
probability in the quantum formalism. As long as we insist on identifying
the physical properties with these eigenvalues, we will always have this type
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of process occurring. It was this specific mathematical structure that Bohm
(1980) had in mind when he proposed the notion of the implicate order. In
this view the non-commutative algebra is the implicate order. Each measure-
ment makes manifest or explicates an eigenvalue that was enfolded in the
algebra of operators. This is the origin of the notion of the implicate order.
Each representation therefore produces a specific explicate order. This is just
another way of expressing what Pauli (1979) put in a more dramatic way:

One can look at the world with the p-eye or with the x-eye, but if
one wishes to open both eyes at the same time, one goes wrong.

It is not that ‘one goes wrong’, it is just that the nature of quantum processes
is such that it is not possible to manifest both aspects at the same time.

If we want to try to construct a phase space while the algebra of dynamical
operators is taken to be primary, then we must resort to constructing shadow
manifolds. But this entails giving up the demand that the physical proper-
ties must always be characterised by their eigenvalues. We keep the idea that
properties made manifest in a measurement are the eigenvalues of the appro-
priate operator, say, Â. But the complementary variable is not an eigenvalue
of the complementary operator B̂. Here we assume

[
Â, B̂

]
�= 0. Instead of

eigenvalues, we use the real part of quantities of the type defined in expres-
sions of the form Re〈a|B̂|a〉. If these expressions are used in Schrödinger’s
equation, then in order to ensure conservation of energy, they must be ac-
companied by a supplementary energy. It is this energy that has traditionally
been called a quantum potential. We see that the quantum potential energy
is an internal energy. Thus we can now see exactly why this potential energy
is totally different from a classical potential and why it has no external source
(for detailed properties of the quantum potential, see Bohm and Hiley 1993).

In this way we see that the Bohm approach is deeply embedded in the
quantum formalism and should not be emotionally dismissed out of hand as
I have often found it to be. It should provoke no ideological battle. After
all, even though we cannot show empirically that a particle actually follows
a trajectory, it is equally true that we cannot empirically demonstrate that
it does not follow a trajectory. No experiment can decide between these two
possibilities, so that the question cannot be resolved by experiment. Surely
the Bohm approach simply provides another perspective on quantum pro-
cesses in general and should be used if it helps to clarify things. It does not
usurp the standard approach, it merely shows that there is another way of
looking at quantum phenomena which many find useful.
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17 Quantum Phenomena
Within a New Theory of Time

Avshalom C. Elitzur and Shahar Dolev

A few difficulties with the way present-day physics accounts for time are
pointed out, and several novel quantum-mechanical results are described.
On the basis of these results, an outline for a new interpretation of QM is
proposed, starting from the assumption that spacetime itself is subject to
incessant evolution.

17.1 Introduction

In a few crucial passages in the history of physics, seemingly unrelated riddles
turned out to merely reflect different facets of the same phenomenon. Such,
we submit, may be the lot of the quantum oddities on the one hand, and the
elusive nature of time on the other.

Our path to this hypothesis went through pondering several physical is-
sues, which we shall recount in the following sections before describing our
findings and proposing our theory. Section 17.2 briefly introduces the two
old enigmas of time’s apparent transience and asymmetry. Sections 17.3–17.5
point out a simple argument for an intrinsic time arrow. Section 17.6 briefly
introduces the advanced action interpretations of QM and their implications.
Sections 17.7–17.8 describe some novel experiments that seem to indicate
that the wave function evolves in a way that defies ordinary notions of space
and time. Section 17.9 proposes an interpretation of these findings, which we
broaden to a sketchy outline of a new theory of spacetime in Sect. 17.10.

17.2 Two Peculiarities of Time:
Transience and Directionality

Ordinary experience notoriously clashes with physical theory with respect
to time. We keep feeling that time ‘goes by’, that there is a special ‘now’
moving from past to future, and that future events are born anew out of the
present. These characteristics of reality are known as ‘becoming’. Yet theoret-
ical physics dismisses this natural impression as mere illusion, and for good
reasons. Time is the parameter of all motion and change; ascribing motion
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or change to time itself is bound to run into absurdities. For example, if time
flows, or if the ‘now’ moves, how fast is this motion? To apply such terms to
time would entail a higher time parameter, which would in turn necessitate
a yet higher time and so on ad infinitum. The vast literature on this issue
(see, e.g., [1, 2] and references therein) makes it clear why the overwhelming
majority of physicists have avoided this line of thinking altogether, opting
instead for the simple and self- consistent ‘tenseless’ account, which has cul-
minated in relativity theory. Time, by this account, constitutes the fourth
dimension, alongside the three spatial ones, of spacetime. All events – past,
present and future – coexist along time, just as different sites coexist along
space.

It should be stressed that this ‘block universe’ picture is not just an in-
terpretation of relativity theory but an integral part of it,1 for even familiar
relativistic effects such as length contraction entail it. Consider the following
exercise, which may be regarded as the spatial analogue of the ‘twin paradox’.
A spaceship of length L0 passes at near-c velocity through a space tunnel of
the same length. From the tunnel’s reference frame, the spaceship’s length is
contracted to

L = L0

√
1− v2

c2 , (17.1)

due to its motion. Hence there is a certain time interval during which the
tunnel’s two gates can be briefly shut while the entire spaceship travels within
the tunnel. From the spaceship’s reference frame, however, it is the tunnel
that contracts, hence at no time can the entire spaceship reside within it, let
alone with the two gates shut!

The two conflicting accounts are compatible only because the two events:

• the entering of the rear of the spacecraft through the tunnel entrance,
followed by the entrance gate shutting,

• the emergence of the front of the spacecraft from the tunnel exit, following
the opening of the exit gate,

occur in opposite time sequences for the two reference frames (Figs. 17.1 and
17.2).

In the relativistic framework, then, the only objective elements are the
two worldlines of the spacecraft and the tunnel, extending from past to fu-
ture, while the ‘now’ plane is observer-dependent.2 This ‘tenseless’ picture
is even more pronounced in general relativity, where the reciprocal effects of
mass and spacetime on one another presuppose the objective existence of a
1 Even Einstein himself [3, p. 151] regarded the absence of the moving ‘now’ in his

theory as “a matter of painful and inevitable resignation.”
2 Notice that even the temporal ‘twin paradox’, when resolved within special rel-

ativity without appeal to acceleration, is achieved by employing different ‘now’
planes for the two observers [4].
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Fig. 17.1. Different relativistic reference frames give different accounts. (a) The
spaceship and the tunnel are of equal length when in relative rest. (b, c) Conflicting
accounts arise due to the relative motion of the spaceship and tunnel

Fig. 17.2. From what seems to be an objective four-dimensional set of events, the
reference frame of the spaceship picks (x1, t1) and (x2, t3) as simultaneous, while
for the tunnel (x1, t3), (x2, t1) are simultaneous

4D spacetime. Time’s geometric aspect is even more strongly pronounced in
several exotic solutions of relativity that allow spacetime tunnels and closed
timelike loops. Relativity, then, allies with basic logic in dismissing the pas-
sage of time.
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Mainstream physics is similarly dismissive towards the other distinctive
attribute of time, namely, its apparent directionality . In this respect too, time
differs radically from the spatial dimensions: There is no universal ‘south’ or
‘up’.3 Not so with time, as ‘past’ and ‘future’ differ significantly everywhere in
the universe due to the second law of thermodynamics. Most physicists, how-
ever, belittle this directionality by pointing out that physical law itself is T -
invariant. Hence, as nearly all microscopic interactions are time-symmetric,4

the second law is often denied the status of a real law. Irreversibility, so goes
the argument, occurs only in ensembles of particles, so it may merely reflect
the universe’s initial state, which, for some reason, happened to be highly
ordered. One could equally conceive of a universe whose initial state was to-
tally disordered but which, by the same T -invariant laws, gradually becomes
ordered in time.5

It is a very impressive feature of the position of mainstream physics that
these two negative assertions:

• dismissing time’s passage as illusion,
• dismissing time’s arrow as an artifact of the initial conditions,

neatly accord with one another. If the universe is a four-dimensional collection
of equally-existent events, with no privileged ‘now’, then both readings of its
history are equally valid. Entropy increases as well as decreases with time,
depending on whether the observer chooses to read the history of the universe
forwards or backwards! Whether one likes this account or not, it is admittedly
coherent and paradox-free.

Yet, a few dissenting voices are heard, most notably Davies [6], and for
convincing reasons too. To believe that even our future events, including
everything we may decide to do, ‘already’ exist in time, just as other places
exist in space, is very awkward. True, intuition has often been proved deficient
by modern physics, but it should not be dismissed off-hand. Our immediate
perception of time might be directly sensing an inherent feature of it that
has not yet found its place in the formalism. Even relativity theory indicates
that time differs from the spatial dimensions in some as-yet unclear way: it
3 True, weak interactions do not conserve parity. Therefore mirror images of the

same physical process are not always equally probable. Nevertheless, there are
still no absolute directions of space.

4 Only ‘nearly all’. The CP violation exhibited by weak interactions entails, by
CPT invariance, a basic T violation too. “It is hard to believe,” says Penrose [5, p.
583], “that Nature is not, so to speak, ‘trying to tell us something’ through the
results of this delicate and beautiful experiment.” Hear, hear!

5 In fact, due to the ergodicity of physical laws, a universe with any initial con-
dition, given a long enough period of time, will reach both entropy-increasing
and entropy-decreasing phases. But the huge amount of astronomical and other
scientific observations are all compatible with the proposition that the universe
was created some thirteen billion years ago, a period much too short for the
above argument.
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bears the imaginary sign. Why is t assigned the minus sign, viz.,

∆s2 = ∆x2 + ∆y2 + ∆z2 −∆t2 (17.2)

in Minkowski’s equation? Relativity simply presupposes rather than explains
this difference between t and its three counterparts.6

But if the conventional dismissal of time’s directionality is congruent with
the dismissal of its transience, would a loophole in the former not challenge
the latter? Such a possible loophole is discussed next.

17.3 Indeterminism Entails
an Intrinsic Time-Asymmetry

It is embarrassing to observe how rarely the vast literature on time’s arrow
(see, e.g., [8, 9]) refers to the closely related issue of determinism. Are the
basic interactions between particles truly random, or is information always
preserved at some smaller level? This issue is crucial, as it has a straightfor-
ward bearing on the origins of irreversibility. We shall first point out exactly
what bearing it has, and in the next section discuss determinism itself.

Recall again the conventional approach: the second law is not a real law
but a mere fact – albeit ill-understood – about the beginning of the universe.
According to Price [8, p. 262]: “What needs to be explained is the low-entropy
past, not the high-entropy future – why entropy goes down towards the past,
not why it goes up towards the future.” One could, so goes the argument,
conceive of a closed system, such as the entire universe, where the initial
conditions lead to increasing order . All it takes for such an evolution is that
the particles in the system should be pre-arranged with the appropriate pre-
cise correlations that would ensure their later convergence into increasingly
ordered states.

There is, however, a crucial difference between the normal, entropy-
increasing evolution, and the time-reversed, order-increasing evolution. The
latter, not the former, requires an infinitely precise pre-arrangement of all
the system’s elementary particles. Consequently, when setting a system to
evolve into a lower entropy state, any failure of a state to precisely determine
the next state during its evolution will, given sufficiently many interactions
between the system’s constituents, ruin the increase in order. Boltzmann’s
entropy measure,

S = k lnW , (17.3)

6 The question is better put this way: Why can worldlines extend only in a timelike,
never a spacelike fashion? The answer would be that the speed of light must
never be exceeded, but as Sudarshan [7] has shown, relativity does not forbid
the existence of tachyons, whose worldlines would be spacelike. Why, then, are
tachyons never observed?
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x

y

t

Fig. 17.3. A computer simulation of an entropy-increasing process, with the initial
and final states (right) and the entire process using a spacetime diagram (left). One
billiard ball hits a group of ordered balls at rest, dispersing them all over the table.
After repeated collisions between the balls, the energy and momentum of the first
ball is nearly equally divided between all the balls

is based on the trivial arithmetical fact that there are countless non-special
microscopic arrangements that make disordered states while very few, special
arrangements make ordered ones. So if nearly every initial arrangement will
eventually give rise to entropy increase, any interference following such an
initial state is very unlikely to alter this destiny. Not so for the few initial
arrangements that lead to order increase. They can give rise to eventual order
only if nothing interferes with their later evolution.

Figure 17.3 shows the results of a computer simulation of an ensemble of
billiard balls. In the initial state the balls are ordered and all the momentum
is concentrated in one ball that hits them. The resulting evolution of the
system takes it to a higher entropy state, where the balls are scattered and
the momentum is evenly distributed amongst them. Figure 17.4 shows the
development of a very unique state. Although it looks disordered, its sub-
sequent evolution will take it to an ordered state. So far, so good. But we
now introduce a small random disturbance into the progression of the or-
dered state. Allowing the entropy-increasing system to evolve (Fig. 17.5), the
disturbance only caused an insignificant shift in its destiny from one high-
entropy configuration to another, practically indistinguishable one. Not so
with the time-reversed process (Fig. 17.6). The slightest variation in the po-
sition or momentum of a single particle creates a disturbance in the system’s
evolution which – given sufficiently many interactions between the particles
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Fig. 17.4. The time-reversed process. All the momenta of the balls are reversed at
t350. Eventually, the initially ordered formation is re-formed, as at t0, ejecting back
the ball that initiated the process

– further increases as the system evolves. Consequently, entropy increases in
the time-reversed system too.7

The relevance of this observation to the origins of irreversibility is imme-
diate [10]: Had physics been able to prove that determinism does not always
hold – that some interactions are genuinely probabilistic – it would follow
that entropy always increases, regardless of the system’s initial conditions.8

An intrinsic time arrow would then emerge in any closed system under what-
ever initial conditions, congruent with the time arrow of the entire universe,
in which closed systems are supposed to be shielded.
7 The ergodicity argument can be raised here too. In an indeterministic but ergodic

system, after a long enough time, the system will display both entropy increase
and decrease. One might therefore argue that the universe’s relatively ordered
state at the present is due to a mere fluctuation, within which all our scientific
observations just happen to comply with a systematic physical theory. We do
not need to bother to refute such a possibility as, by the laws of probability, it is
susceptible to a powerful reductio ad absurdum into solipsism. It is much more
probable that it is only the reader’s brain state, rather than the entire universe,
or even a part of it, that is the result of such a unique fluctuation.

8 For many years, Hawking has been claiming that unitarity is lost during black
hole evaporation, while at the same time maintaining that the thermodynamic
asymmetry is only due to the universe’s initial condition. We have pointed out the
contradiction between these two assertions [11]. Interestingly, Hawking recently
recanted his unitarity loss hypothesis [12].
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Disturbance

Fig. 17.5. The same simulation as in Fig. 17.3, with a slight disturbance in the
trajectory of one ball (marked by the small circle). The entropy increase seems to
be indistinguishable from that of Fig. 17.3
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Disturbance

Fig. 17.6. The same computer simulation as in Fig. 17.4, with a similar distur-
bance. Here, the return to the ordered initial state fails
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17.4 Hidden-Variable Theories
Are Forever-Hidden-Variable Theories

In other words, if God plays dice, irreversibility is inherent in nearly any
process. But does he? QM is the natural place to look for an answer.

The way QM bears on the issue can be summarized with three observa-
tions:

• The Schrödinger equation is deterministic and works perfectly well for the
pre-measured state.

• It fails miserably once the state is observed, measured or interacts in any
other way with the environment, so that the superposition gives way to
one out of the many previously possible states.

• This new, ‘collapsed’ state is not known to be causally determined by the
pure state that preceded the instance of measurement.

For example, when the spin superposition

Ψ = | ↑〉+ | ↓〉 (17.4)

gives way, upon measurement, to either | ↑〉 or | ↓〉, nothing in the original
state is known to have determined the outcome. Indeterminism, therefore,
seems to sneak in during this transition.

The uncertainty principle further stresses this causal void in the pre-
measurement state. Intuitively, a tradeoff like

∆x∆p ≥ �/4π , (17.5)

which assigns a constant degree of uncertainty to the measurement of cer-
tain pairs of variables, suggests that there is a certain ontological indetermi-
nacy, rather than mere epistemological ignorance, to many physical variables.
Indeed, the double-slit experiment, the best visual demonstration of this
position–momentum tradeoff, shows that, when the photon/electron wave
function passes through the partition, the position is not merely unknown
but, genuinely ‘smeared’ over space, enabling it to gauge both slits at the
same time. Momentum, in turn, is similarly ‘smeared’ when the position is
accurately measured.

Ironically, the discoverer of the uncertainty principle does not appear to
have fully grasped its profoundness. The conceptual device known as Heisen-
berg’s microscope [13] turned out to be insufficient for explaining the true na-
ture of the uncertainty. It only showed that the influence of the measurement
prevents accurate measurement of the particle’s position and momentum at
the same time. To see that there is more to quantum uncertainty, consider the
EPR–Bell experiment [14]. This setup seems to indicate that the variables
are not only unknown but do not exist before measurement. The symmetry
under rotation of the singlet state,
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Ψ =
1√
2

(
| ↑〉1| ↓〉2 − | ↓〉1| ↑〉2

)
, (17.6)

implies that the two particles lack definite spin values, not only in the z
direction but in all other directions as well. And indeed the experimental vi-
olations of Bell’s inequality show that the spins of the two particles could not
have been fixed prior to the measurement. The simplest conclusion, therefore,
is that, if (17.6) does not give any preference for either the spin-up or spin-
down outcomes, such a preference simply does not exist. Each particle’s spin
is probably created de novo at the instant of measurement, thereby forcing
the opposite direction on the other particle.

Determinism, however, proved to be too precious to be given up by all
physicists. A survey of the interpretations of QM [15] shows that about half
of the interpretations preserve determinism in some form of hidden variables
or parallel universes, which supplement the superposition of (17.4) or (17.6)
with some additional variables. These variables are believed to determine non-
locally the results of measurements performed on the particles themselves.
Even radical new models, such as those due to ’t Hooft (Chap. ??) and Smolin
(Chap. 10), go to great lengths to preserve determinacy by assuming hidden
variables of one kind or another.

But can these models be scientifically proved? We have a serious con-
cern that research on this issue might go astray for many years, claiming
numerous years of futile labor, while seeking something that may, a priori ,
be undetectable. Consider again the above EPR–Bell proof against local real-
ism. While it has led several authors to abandon the idea of hidden variables
altogether, many others (including Bell himself) kept envisioning nonlocal
hidden variables instead. What these models basically assume is that the two
particles leave the source not superposed but with some pre-existing values
of the hidden variables which carry on a common context for the spins of
both particles. Then, upon measurement of one particle, this shared con-
text affects the result of the measurement performed far away on the other
particle. Now, to the extent that these models are fully deterministic, they
assume that even this change of the spin, brought about by the measurement,
obeys causal laws. But here a simple question ought to be raised: Can such
hidden variables ever be observed? A simple analysis can easily show that,
if quantum nonlocality is not buffered by indeterminacy, relativity must be
empirically violated .

This conclusion is quite straightforward, yet the basis for it has seldom
been explored. Elitzur [16] has pointed out that the three basic no-no’s of
theoretical physics:

• the quantum-mechanical impossibility of predicting the outcome of a mea-
surement,

• the relativistic prohibition on superluminal velocities,
• the thermodynamic unlikelihood that the entropy of a closed system will

decrease,
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intriguingly support one another, in such a way that violation of one principle
leads to violation of the other two.

The argument, however, was qualitative, failing to give a rigorous proof.
Yet indirect support for it came from a study that made an opposite claim.
Valentini [17,18] boldly suggested that the relativistic prohibition on superlu-
minal velocities is merely due to entropy increase at the quantum level which
has ‘scrambled’ the hidden variables of quantum particles, making these vari-
ables akin to ‘noise’. He went on to suggest that, if a technique were developed
to distill a handful of particles in a low-entropy state, these particles could
be used, for example, to instantaneously transmit information through the
singlet state. The relativistic upper limit on c was thus rendered ‘fact-like’
rather than ‘law-like’, just like the second law of thermodynamics. This is
a far-reaching hypothesis, with the added merit of being testable. For our
purpose it should be noted that it reaffirms that, once quantum nonlocality
is not buffered by indeterminacy, violations of relativity are bound to occur.

However, we ourselves believe that the laws of relativity – so simple, co-
herent, and beautiful – reflect something very profound about physical reality
rather than being just a consequence of noise. Likewise for quantum uncer-
tainty: it is more likely to be conveying some fundamental aspect of causality
than to be merely reflecting a technical limit of measurement. Indeed, the
Bekenstein–Hawking [19–21] and the Unruh [22] effects seem to indicate that
QM, relativity and thermodynamics are related in some as-yet unfathomed
ways. Most likely, therefore, the next revolution in physics will be a theory
that will incorporate relativity and QM as important ingredients.

Therefore, although there is no clear resolution at present to the issue
of (in)determinism, our conclusion stands: For any future theory in which
relativity theory will be an integral ingredient, hidden variables must remain
forever unobservable. This places these entities in a position that is much
more problematic than that of the ether. A physical theory based on entities,
the detection of which is forbidden by the theory itself, belongs rather to the
realm of religion.9

9 In order to better assess the theoretical impasse involved with hidden variables
within a relativistic theory, consider the status of quarks in particle physics.
Quarks too cannot be directly observed, due to their confinement. Yet parti-
cle physics has pointed out several predictions that follow from the existence of
quarks and are unaccountable in any theory that does not make this assump-
tion. These predictions have so far been verified. No such falsifiable prediction is
proposed by the hidden variable theories.
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17.5 An Interim Conclusion:
Time Is Intrinsically Asymmetric

To summarize the issue of time asymmetry, the evidence we can point to is
admittedly circumstantial, but seems fairly compelling. It is reasonable to
say that:

1. QM implies an indeterminacy in any interaction in which a quantum
system interacts with the environment.

2. To the extent that this indeterminacy is only apparent and deeper hidden
variables underlie it, then, by relativity theory, these variables must never
be detected.

3. A theory based on absolute unobservables is unscientific. Indeterminism,
therefore, is a simpler, hence perhaps ontologically better description of
Nature.

4. But if any measurement-like interaction is truly indeterminate, then an
intrinsic time asymmetry, independent of initial conditions, must be in-
herent to any process in which such an interaction of a quantum system
with the environment is present.

This argument for time asymmetry reopens the issue of time transience. If
determinism does not hold, then mainstream physics can no longer boast the
consistency between denying time transience and dismissing time asymmetry,
pointed out at the end of Sect. 17.2. In a universe not strictly governed by
determinism, one reading of the universe’s history – initial order gradually
giving way to increasing entropy – is perfectly reasonable, while the time-
reversed account – high entropy gradually converging into order – is absurd or
even solipsistic. In other words, in the absence of a proof for determinism, we
have no reason to believe that the future ‘already’ exists, causally determining
the universe’s present and past. The person-in-the-street picture of becoming,
in which the future is ontologically inexistent, to be genuinely created anew,
regains credibility.

We shall now put forward some new quantum-mechanical evidence in
favor of this apparently naive view.

17.6 The Advanced Action Hypothesis

It is again to QM that we turn in search for new insights into the nature of
time. Aharonov ( [23] and Chap. 15) and later Cramer [24] proposed two very
appealing interpretations of QM (the two-vector formalism and the transac-
tional interpretation, respectively) which, for the purpose of the present dis-
cussion, can be taken as one model, henceforth dubbed the Advanced Action
(AA) hypothesis. Our use of the adjective ‘advanced’ is two-fold: it complies
with the capricious physical convention that refers to retroactive action as
‘advanced’ and normal action as ‘retarded’, and it discloses our personal bias
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Fig. 17.7. AA in an EPR experiment. After the emission of the particles at the
EPR source (1), a measurement occurs at one of the detectors (2). The effect of the
measurement then returns back to the EPR source along the past worldline of the
particle (3) and from there follows the other particle’s worldline to inform it of the
change in state (4)

in favour of this idea. The noun ‘hypothesis’ further conveys the hope that
this interpretation may eventually yield testable predictions.

According to AA, any quantum interaction is brought about not by one
wave function but by the combined effect of two (or even more) waves, going
back and forth in time. The initial wave goes from the source to the future
absorber(s), such as measuring device, observer, etc. (one or more), while the
reciprocal, ‘advanced’, waves(s) return to the source backwards in time.

The famous EPR experiment provides a quick demonstration of the ele-
gance of AA. The measurement of one particle affects not only that particle’s
state at the moment of measurement but also all its previous states – in-
deed its entire worldline right down to the source – and then zigzags back
to the other particle up to the present (Fig. 17.7). Cramer [24] has system-
atically applied AA to explain a vast range of famous quantum-mechanical
peculiarities (see [25] for a recent perspective, and also [26] for some novel
information-theoretic advantages of this model).

As revolutionary as AA is, however, Cramer [24] stresses that his interpre-
tation of QM is just that, namely, an interpretation, not a theory, and hence
yields just the same predictions as the quantum formalism itself. He further-
more endorses the standard Block Universe picture of time. It is within a
‘static’ (Cramer’s term) four-dimensional spacetime that the mutual ‘trans-
actions’ between past and future events take place.

In contrast, Aharonov, while not proposing predictions that differ from
those of quantum theory, still derives from AA predictions that would prob-
ably never have been predicted within another theoretical framework. He is
even more unorthodox in his approach to the nature of time, stating – al-
though so far only in personal communication – that his interpretation entails
a true dynamics of spacetime itself. He believes that every instant in time
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within a quantum process is visited twice: first by the forward propagating
wave function and then by the complementary one.

It is here that we would like to go a step further. In the following sections
we propose two experiments whose predicted results, as obliged by QM and
inspired by AA, strongly clash with ordinary notions of space and time. On
the basis of these experiments, we shall endorse Aharonov’s vision of AA
within a theory that ascribes genuine dynamics to spacetime itself.

17.7 When One Quantum Object Measures Another:
Inconsistent Quantum Histories

The oddities of QM, whether in the form of real experiments or conceptual
paradoxes, such as the double-slit, delayed-choice, EPR, and Schrödinger’s
cat, are many and famous. They are paradoxical in that they point out in-
consistencies between QM and classical physics, especially relativity. In this
section and the next we present a new family of thought experiments10 that
are paradoxical in the deeper sense that they derive from QM an evolution
that seems to be inconsistent with itself.

Fig. 17.8. Interaction-free measurement. BS1 and BS2 are beam splitters. In the
absence of the obstructing bomb, there will be constructive interference on path c
(detector clicks) and destructive interference on path d (no click)

One origin of these experiments may be found in Elitzur and Vaidman’s
[27] Interaction-Free Measurement (IFM) (Fig. 17.8). Using a Mach–Zehnder
interferometer (MZI) with an object placed along its v path, EV pointed out
10 In what follows we shall not bother to distinguish between gedanken and real

experiments. QM is so rigorous that no one expects a gedanken experiment not
to give the predicted result when performed in reality. And indeed, most of QM’s
gedanken experiments have by now been successfully performed.
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that, in 25% of the cases, a single photon traversing the MZI may end up
in detector D, indicating that it has been affected by the object on its v
path, and yet that, by the photon’s very arrival at BS2, it must have taken
the opposite, u path, since otherwise it would have been absorbed by the
object. To make things more dramatic, EV took, as the blocking object, a
supersensitive bomb that can be detonated by a single photon. Is it possible
to know whether the bomb is good without detonating it? Their device allows
one to save 50% of the bombs tested this way, a figure later brought close to
100 % by a significant improvement proposed by Kwiat et al. [28], who also
carried out the experiment.

The novelty of the EV device lies essentially in an exchange of roles.
The quantum object, rather than being the subject of measurement, becomes
the measuring apparatus itself, whereas the macroscopic detector (or super-
sensitive bomb in the original version) is the object to be measured. In their
paper [27], EV mentioned the possibility of an IFM in which both objects,
the measuring and the measured, are also single particles, i.e., quantum me-
chanical objects, in which case even more intriguing effects can appear.

Fig. 17.9. Mutual IFM, where the ‘bomb’ is also quantum-mechanical

This proposition was taken up in a few seminal papers by Hardy [29–31].
In one of these articles, the bomb has been replaced by another superposed
atom. Figure 17.9 illustrates this experiment. A photon traverses an MZI. On
one arm of the MZI there is a spin-1/2 atom prepared in a spin state |X+〉,
that is, σx = +1, and split by a non-uniform magnetic field M into its two Z
components. The box is then carefully split into two halves, each containing
either the |Z+〉 or the |Z−〉 part, while preserving their superposition state.
In other words, if the atom’s spin in the Z direction is ‘up’ it resides in one
box and if it is ‘down’ it is in the other. The boxes are transparent for the
photon but opaque for the atom. The Z+ box of the atom is positioned across
the photon’s v path in such a way that the photon can pass through the box
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and interact with the atom inside it with 100% efficiency. Then a photon is
sent into the apparatus. Here the photon and the atom, so to speak, measure
each other’s position.

In 25% of the cases, this mutual measurement will be completed, with the
result that the photon took the v path and the atom turned out to be in the
intersecting box on that v arm. Hence it will absorb the photon and be in an
excited state. Let us discard these cases. In another 50% of cases, a photon
will end up in detector C. This group gives no conclusive results, so let us
ignore it too.

It is the remaining 25% cases that are the most curious. The photon ends
up in detector D, indicating that its v path has been blocked and that it
must have taken the u path, but this measurement has also ‘collapsed’ the
atom on the v path. In other words, the atom must always be found in the
intersecting box.

Notice that the loss of the atom’s superposition is a real physical effect.
Prior to the photon passage, the atom’s two boxes could be reunited, and
the atom’s spin state |X+〉 could be measured and shown to be intact. (This
is quite analogous to the interference effect.) Not so after the photon has
traversed the MZI! The atom’s position in the intersecting box is now certain
and its X spin is consequently random. And yet, despite this physical effect
exerted on the atom, the photon, which is supposed to have caused this effect,
seems to have taken the opposite, u MZI arm!

Stimulated by this result due to Hardy, we began devising other exper-
imental setups in which several particles ‘measure’ one another before the
macroscopic detector completes the measurement. The result is a few exper-
iments in which the history they yield seems to be inconsistent.

D
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γ
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BS2

u

v

c

d

Z2+

Z2-

Z1+

Z1-

Z3+

Z3-

B

Fig. 17.10. One-photon MZI with several interacting atoms
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For example, we have replaced Hardy’s atom on path v in Fig. 17.10 by
a row of superposed atoms. The result predicted by QM is that only one of
the atoms, not necessarily the first , will lose its superposition, while all the
others will remain intact. In other words, all atoms on path v except one will
preserve their x spin when reunited [32].

Did one of the atoms in the row block the photon’s way on path v? No,
because if one places an opaque object at the end of the atom row (object B
in Fig. 17.10), and no atom has absorbed the photon, all atoms will remain
superposed! It seems that something must have passed through the row after
all.

How can the photon wave function affect only one out of many atoms
positioned in a row along its path, leaving the others apparently intact, and
yet complete its way through the row to the BS? Naturally, any answer to
this question is bound to be controversial, as the Copenhagen, Pilot Wave,
Many Worlds and other interpretations would propose different explanations.
One lesson, however, might be accepted by the majority of physicists: Mea-
surement affects not only the system’s present state but its entire history.11

It is the final click at d that seals the process. This is, in fact, the lesson de-
rived from Wheeler’s delayed choice experiment [33]. Wheeler himself chose
to interpret it by strict adherence to the Copenhagen interpretation: “No
phenomenon is a phenomenon until it is an observed phenomenon.” But per-
haps it is time we did not shy away from an ontological conclusion, namely,
that a measurement at the end of a quantum process genuinely affects the
history of the process in both directions of time.

17.8 The Quantum Liar Paradox

If measurement can sometimes ‘rewrite’ the history of a quantum process,
some traces of this ‘rewriting’ may be found in the form of odd inconsistencies
within the resulting history. In terms of footnote 11, a scenario is possible
which is analogous to a Schrödinger cat found to be long dead alongside with
the scratches and droppings within the box which indicate that it has been
alive all that time.

Consider two atoms in the |X+〉 state, each separated according to its Z
spin into two boxes as in the previous section (Fig. 17.11). Two coherent laser
beams are directed towards an equidistant beam-splitter (BS), behind which
11 One of us (AE) owes this insight to a student’s question about Schrödinger’s cat.

She argued that, if the box is opened after sufficiently many hours, it should be
possible to know whether the cat has been dead or alive during the preceding
hours. If the cat has been alive all that time, it will have soiled the box and
left scratches on its walls, whereas if it has been dead, it will show signs of
decomposition. Here too, the measurement at the moment of opening the box
must select not only the cat’s state at that moment but its entire history within
the box.
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Fig. 17.11. Entangling two distant atoms that have never interacted

are two detectors. Each beam crosses one of the two boxes of either atom.
The laser sources are of low enough intensity to ensure that, on average,
only one photon is emitted during a given time interval t. When the atoms
are not present, the two laser sources are set to interfere constructively on
branch c and destructively on branch d. This coherency can last for a period
of time τ � t. Notice the oddity of the situation: a single photon is detected
at C, yet by QM, the very uncertainty about its origin makes it interfere
constructively, as if it has originated from the two sources!

Now consider the case in which the two atoms are present and detectors
D click. We know that one of the beams was blocked (thereby spoiling the
destructive interference). This means that one of the atoms ‘collapsed’ into
the intersecting box, and the other into the non-intersecting one, although
we do not know which atom collapsed into which box. Again this uncertainty
suffices to entangle the two atoms into an EPR state [34]:

|Ψ〉 = |Z+〉1|Z−〉2 − |Z−〉1|Z+〉2 . (17.7)

Notice that this experiment may be regarded as a time-reversed EPR, as the
two atoms do not share a common event in the past but rather in their future,
so to speak. It will therefore be referred to as RPE henceforth.

But the most intriguing feature of the experiment emerges once we employ
the famous tool for proving a nonlocal influence between entangled particles,
namely, Bell’s inequality. Let us first recall the gist of Bell’s nonlocality proof
for the ordinary EPR experiment [14]. Let a pair of EPR particles be created
with total spin zero. Let the two particles travel to two equidistant measuring
instruments. Now consider three spin directions, x, y, and z. On each particle
of the pair, a measurement of one of these directions should be performed at
random. Let many pairs be measured this way, such that all possible combi-
nations of x, y, and z measurements are eventually performed. Then let the
incidence of correlations and anti-correlations be counted. By quantum me-
chanics, all same-spin pair measurements will yield 100% correlations, while
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all different-spin pair measurements will yield non-correlated results (half
correlated and half anti-correlated). And indeed, this is the result obtained
by numerous experiments to this day, e.g., [35–38] to name but a few. By
Bell’s proof, such a unique combination of correlations and anti-correlations
cannot have been pre-established. We conclude that the spin direction (up or
down) of each particle is determined by the choice of spin angle (x, y, or z)
measured on the other spacelike-separated particle, no matter how distant.

This is the familiar EPR–Bell scenario. Let us now apply this method
to RPE. Recall that each atom has been split according to its spin in the z
direction. Therefore, to perform the z measurement, one has simply to open
the two boxes and check where the atom is. To perform x and y spin mea-
surements, one has to reunite the two boxes under the inverse magnetic field,
and then measure the atom’s spin in the desired direction. Having randomly
performed all nine possible pairs of measurements on the pairs, many times,
and using Bell’s theorem, one can prove that the two atoms affect one an-
other instantaneously, as in the ordinary EPR, with the difference that they
share an event not in the past but in the future.

However, a puzzling situation now emerges. In 44% (i.e., 4/9) of the cases
(assuming random choices of measurement directions), one of the atoms will
be subjected to a z measurement – namely, checking in which box it resides.
Suppose, then, that the first atom was found in the intersecting box. This
seems to imply that no photon has ever crossed that path, which is obstructed
by the atom. But then, by Bell’s proof, the other atom is still affected nonlo-
cally by the measurement of the first atom. But then again, if no photon has
interacted with the first atom, the two atoms share no causal connection, in
either past or future!

Fig. 17.12. Entangling two atoms

The same puzzle appears in the cases in which the atom is found in
the non-intersecting box. In this case, we have a 100% certainty that the
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other atom is in the intersecting box, meaning, again, that no photon could
have taken the other path. But here again, whether we subject the other
atom to the ‘which box’ measurement or to an x or y measurement, Bell-
inequality violations will occur, indicating that the result was affected by the
measurement performed on the first atom (Fig. 17.12).

Put otherwise, the very fact that one atom is positioned in a place that
seems to preclude its interaction with the other atom is affected by that other
atom. This is logically equivalent to the statement: “This sentence has never
been written.” We are unaware of any other quantum mechanical experiment
that demonstrates such inconsistency.12

17.9 A Hypothesis: The Quantum Interaction
Involves a ‘Rewriting’ of the Evolution in Spacetime

Although the existing interpretations of QM will claim that they have no
difficulty in explaining the above results, our search for a model that will be,
at the same time, realistic, parsimonious and, if possible, elegant, has led us
to propose an interpretation of our own. We aspire to deal with the oddities
of QM not by abandoning the hypothesis of objective reality existing out
there, but by working within a realistic framework that forces one to propose
new hypotheses that may later be subjected to empirical test. We also seek
to integrate the four-dimensional spacetime of relativity with the somewhat
opposite hints provided by QM that genuine change, not static geometry, is
the most basic property of reality.

General relativity has taught us that spacetime is a real physical entity,
namely, a four-dimensional manifold of worldlines with their corresponding
curvatures. Within this geometric picture, the transactional interpretations
reviewed in Sect. 17.6 fit in very naturally, as they require interactions be-
tween earlier and later events. Where we break new ground is in proposing
that this spacetime is not the changeless Minkowski array. Perhaps rather
spacetime itself is subject to evolution. True, ascribing evolution to space-
time itself runs the risk mentioned in Sect. 17.2, i.e., of invoking an infinity of
higher- and higher-order times. We shall face this concern in the next section.
12 It is possible to make this experiment even more striking by entangling two

excited atoms, out of which only one can emit a photon within a given time
interval. The atoms thus become entangled with respect to their excited/non-
excited state. A Bell-type inequality can be formulated for this case by using
measurements that are orthogonal to the excited/non-excited state. Here too, the
measurement of one atom may show it to be excited, thereby making it appear
as if it has never emitted a photon, and thus could never become entangled
with the other atom. And yet, by Bell’s inequality, this result must also be
affected by measurement of the other atom. We are currently elaborating such
an experimental scheme.
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If this is so, if spacetime itself evolves, then experiments yielding appar-
ently inconsistent histories, like those described above, may warrant an ac-
count that goes something like this: first a retarded interaction brings about
history t1x1, t2x2, . . . , and then an advanced interaction transforms this his-
tory into t1x

′
1, t2x

′
2, . . . . Consider the above quantum liar paradox. Perhaps

there was first a forward moving evolution by which the two atoms sent vir-
tual photons towards the BS. Then the detection of one photon retroactively
entangled the two atoms backwards in the past. Finally, the measurement
of one atom, which found it to be in the intersecting box, obliterated all
traces of its interaction with the rest of the experimental setup. These reiter-
ations of the process occurred by repeated spacetime zigzags à la Aharonov
and Cramer, but in some real, higher time dimension, over spacetime itself.
Such a model may also be better capable of explaining a few other surprising
results discovered lately by similar methods [40,41].

17.10 An Outline of the Spacetime Dynamics Theory

Our study was motivated by two phenomena which, on the one hand, have
no trace in physical law, and, on the other hand, seem to constantly proclaim
their presence:

• Time, unlike space, seems to be flowing. However, accepting this phe-
nomenon as a true property of time entails several logical and physical
difficulties, such as an endless series of time parameters, so it has often
been dismissed in favor of the simpler, self-consistent Block Universe pic-
ture.

• The fact that we never observe the superposed states of the microscopic
world in our macroscopic world seems to imply a collapse of the wave
function. However, accepting this collapse entails conflicts with relativity
theory as well as with T invariance, and therefore many interpretations
have so far avoided it.

And yet, we have pointed out several indications that these two dismissals
are inadequate – that there is more to time than just a dimension, and that
the wave function does undergo a unique change upon interacting with the
macroscopic world. Moreover, the alleged collapse affects not only the state of
the particle at the moment of observation but, sometimes, its earlier history
as well, suggesting that an entire segment of spacetime is subject to subtle
evolution.

Could it be, then, that the two phenomena – time’s passage and wave-
function collapse – are not only real, but the latter is the very manifestation
of the former? A wave function, after all, is a sum of many equally possible
outcomes, while the measurement brings about the realization of one out of
them, the others vanishing. Is this not the very difference between future
and past? And is collapse not elusive because it creates the elusive ‘now’?
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Indeed de Broglie (quoted in [42]) paid tribute to Bergson as a philosophical
ancestor of QM. Had Bergson had a chance to study QM, de Broglie asserted,
he would learn that Nature hesitates at any instant between several choices,
and he would reiterate what he has said in The Creative Mind : “Time is
nothing but this hesitation.”

Here, then, is the unfavored hypothesis of Becoming again, now with a
cosmological twist. Suppose that there is indeed a ‘now’ front, on the one
side of which there are past events, adding up as the ‘now’ progresses, while
on its other side there are no events, and hence, according to Mach, not even
spacetime. Spacetime thus ‘grows’ into the future as history unfolds. Time’s
asymmetry would therefore be naturally anchored in this alleged progress of
the ‘now’.

Notice that by ascribing to the ‘now’ the very creation of spacetime itself,
we do away with all the logical difficulties which have so far beset the ‘moving
now’ hypothesis (see Sect. 17.2). Our hypothesis is merely an extension of
the Big Bang model, taking advantage of its logical rigor: If the Big Bang
has created not only matter and energy but also spacetime itself, then no
one needs to worry about ‘what happened before the Big Bang’ or ‘what lies
outside spacetime’. Similarly for our hypothesis, the ‘now’ does not move on
some pre-existing dimension but rather creates that dimension. This is not
‘movement’ in the ordinary sense, so no endless series of time parameters is
entailed by it.

Now let this Becoming be made quantum mechanical. What role does the
wave function play in this creation of new events? The dynamically evolving
spacetime allows a radical possibility. Rather than conceiving of some empty
spacetime within which the wave function evolves, the reverse may be the
case: The wave function evolves beyond the ‘now’, i.e., outside of spacetime,
and its ‘collapse’ due to the interaction with other wave functions creates
not only the events, but also the spacetime within which they are located in
relation to one another . The famous peculiarities of the quantum interaction –
nonlocality, the coexistence of mutually exclusive states, backward causation
and the inconsistent histories presented in the previous sections, thus become
more natural.

Can the reciprocal effects of spacetime and matter – the celebrated lesson
of general relativity – thus possibly gain a quantum mechanical explana-
tion? Perhaps it is the wave function, we submit, that is more primitive than
spacetime, and the spacetime connecting two events is the product of their
interacting wave functions. We shall close with a more audacious consequence
of this hypothesis for quantum field theory. Perhaps the wave function of a
force-carrying boson, such as a graviton or photon, which, by our hypothesis,
creates also the spacetime within which the final interaction is completed,
determines the spatiotemporal distance between the events. In other words,
‘attraction’ and ‘repulsion’ may be the consequences of the specific spacetime
metric created by the interacting wave functions.
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Only the future, be it a fixed Minkowskian one or an open Bergsonian
one, will decide whether this sketchy proposal will eventually mature into a
viable theory of spacetime dynamics. We can only plead that the questions
raised and the odd phenomena pointed out in the preceding pages call for
radically new ways of thinking about quantum phenomena and spacetime.
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18 Event-Based Quantum Theory

Geoffrey F. Chew

Despite the process discretization implied by Copenhagen rules for inter-
preting local quantum theory, time quantization seems to be precluded by
relativity. Nevertheless a quantum representation of a redshifting spatially-
homogeneous universe may be based on discrete-step Feynman paths carrying
Poincaré-invariant action – paths that not only propagate the wave function
but provide an elementary particle Hilbert space basis. Any path is an ‘event
graph’, at whose vertices elementary particle arcs commence and terminate.
Local path steps are at the Planck scale while, at a much larger ‘measure-
ment scale’, global steps separate successive wave functions. Wave function
spacetime is but a tiny fraction of path spacetime.

Electromagnetic and gravitational actions are ‘at a distance’ in the
Wheeler–Feynman sense, while strong (color) and weak (isospin) actions,
as well as kinetic action, are ‘local’ in a sense paralleling the action of local
field theory. Polarization-rotation of particle arcs within event graphs defines
a localized energy that not only controls kinetic action but provides a source
for gravity analogous to the electric charge source of electromagnetism. Rest
mass is generated by self-action within an arc extended by ‘zitterbewegung
events’ that reverse lightlike arc velocity.

Photons coupled to conserved electric charge and gravitons coupled to en-
ergy enjoy privileged status among elementary fermions and vector bosons.
Although ‘measurement’ lacks a priori meaning, the phase of the complex
wave function facilitates accumulation of ‘information’ through ‘gentle’ elec-
tromagnetic and gravitational events that emit soft photons and gravitons.
Through soft photon–graviton coherent states corresponding to classical
fields, the (global) wave function accumulates an ‘information reservoir’ as
the universe expands.

18.1 Introduction

Because the Copenhagen formulation of quantum theory refers explicitly to
measurement – which, discretely in time, ‘collapses’ the wave function –
whereas any measurement requires long-range aspects of electromagnetism
and gravity, the absence in the Copenhagen rules of any distinction between
short- and long-distance interactions is inconsistent. Whitehead’s notion of
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discrete process [1] – a collection of spacetime-localized events – enables a
cosmological reformulation of quantum theory that promises to elucidate the
meaning of measurement without according this notion a priori status.

A global quantum theory may be founded on events that include huge
numbers of ‘gentle’ events which emit ‘soft’ photons and gravitons to build
up a cumulative ‘information reservoir’ within a global wave function through
coherent states corresponding to classical fields of extremely low frequency. A
gentle event disturbs ‘observable matter’, i.e., matter other than soft massless
bosons, to a degree that is negligible for all practical purposes. A ‘Copenhagen
wave function’ restricted to a ‘laboratory’ region of spacetime that is tiny on
the Hubble scale, and attending only to observable matter, does not recognize
the information reservoir.

The (classical) ‘event’ concept may be incorporated into a discrete, i.e.,
‘stepped’, Feynman (classical) path whose action controls wave function prop-
agation [2]. Path discreteness dovetails with the discreteness of elementary
particles (off-shell as well as on-shell) that provide a basis for Hilbert space.
Any path may be described as a (closed) ‘event graph’ – a set of event ver-
tices connected by elementary-particle-associable arcs. Any arc connects a
pair of vertices through a succession of alternating ‘forward’ lightlike and
spacelike intervals of spacetime, maintaining a fixed lightlike velocity direc-
tion throughout the ‘life’ of the arc. A vertex of an event graph is a potential
event where elementary particles may be created or annihilated. Stationary
action within the sum over all possible paths that build a propagator, to-
gether with the wave function to be propagated, chooses those events that
are ‘likely to occur’.

How does an arc distinguish different types of elementary particle? Any
stepped path is at once an event graph and a set of directed labeled closed
loops, each loop a sequence of ‘pre-events’ separated by lightlike Planck-
scale steps in spacetime. A pair of discrete labels is carried by each pre-
event loop. One loop label is 2-valued and the other 3-valued, as detailed
in Appendix A. Different loops are correlated within an event graph. Any
graph arc comprises a quartet of loop segments whose patterns of labels,
detailed in the appendices, match the quantum numbers – electric charge,
isospin, color, fermion chirality, and generation – carried by the Standard
Model’s elementary fermions and vector bosons. The appendices explain how
the loop-quartet structure of a fermion arc differs from that of a boson arc.
Termination of an arc at an event dissolves the loop quartet and redistributes
the arc’s four constituent loops. Pre-events build the vertices as well as the
arcs of an event graph.

Event-based quantum theory (EQT) displays numerous unusual aspects.
The special role of electromagnetism and gravity will not be addressed in
this introductory discussion. Two other facets of EQT receive priority. One
is discretization of time, and the other is a status for event graphs that is
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more fundamental than that of Hilbert space. These two nonstandard aspects
of EQT are related.

Discrete classical paths, whose causal Poincaré-invariant actions deter-
mine wave function propagation, provide an elementary particle EQT basis
for Hilbert space – a basis sketched in the body of this paper and elaborated
in the appendices. A basis in fields or strings that vary continuously with lo-
cal time is not possible. I shall explain how a EQT path-based wave function
represents matter at a fixed ‘age’. Discretization of wave function age will
be seen to be essential to consistent contact between paths and wave func-
tion. The model incorporates Whitehead’s idea that discrete process is more
fundamental than matter by representing process as Feynman-path steps
from a pre-event to a subsequent pre-event through an age-discretized ‘path
spacetime’ within which only a minuscule portion is occupied by material-
representing wave functions.

In standard quantum theory the wave function changes continuously with
time. The action of standard-theory continuous Feynman paths can be rep-
resented by classical entities such as fields or strings that carry continuous
spacetime labels. Action is spacetime localized in a standard way. Identi-
fying the classical action vehicle as ‘material’, process in standard particle
physics may be said to enjoy material underpinning. As Whitehead appre-
ciated almost a century ago, a converse relationship between matter and
process cannot be represented without discretizing process.

Process discretization is feasible in the spacetime proposed by Milne [3]
during the 1930s in order to connect Hubble’s redshift to a principle of uni-
verse spatial homogeneity. Milne attached a different Lorentz frame – a ‘local
frame’ – to each point in a 3-space of definite age. Lorentz invariance repre-
sented homogeneity of this space. (Although not appreciated at the time of
Milne’s work, the phenomenological meaning of the local frame is provided
by approximate isotropy of cosmic background radiation in any observer’s
local frame.) Milne’s fourth dimension, which I call ‘age’, is Lorentz-frame
independent and correspondingly may be discretized. Discrete process can be
represented by Feynman paths without a priori material association, paths
whose loop constituents take discrete steps forward or backward in age be-
tween successive pre-events. Pre-events, together with global age steps be-
tween successive wave functions related by the path-action-determined Feyn-
man propagator, can provide a Hilbert space basis if and only if the wave
function age step is an integral multiple of the loop step.

The (local) path step in age δ is at the Planck scale of ∼ 10−43 s, while
the (global) wave function step ∆ is at the considerably greater ‘measure-
ment scale’. The wave function step is tentatively guessed to be near 10−5 s
(in a local frame), above the atomic scale but still below the scale of human
consciousness – a step allowing the wave function an S-matrix interpreta-
tion. (Brain wave frequencies are ∼ 10−1 s.) In language introduced long ago
by quantum field theory, the local step may be said to provide ‘ultraviolet-
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divergence cutoff’, while the global step provides infrared cutoff. Disregarding
frequencies below ∆−1 leads Copenhagen quantum physics to associate mea-
surement with ‘wave function collapse’.

The huge integer ratio ∆/δ (∼ 1038) between local and global steps is
presently accepted as a fundamental EQT parameter, enjoying a status like
the scale interval spanned by inflation in standard cosmology. The first wave
function of the universe is at the age of a single global step. Eventually I
hope number theory will point to a precise prime-integer value for the ratio
between wave function step and path step. An example of how number theory
can pick out a special huge prime is provided by the Mersenne prime sequence,
22 − 1 = 3, 23 − 1 = 7, 27 − 1 = 127, 2127 − 1, brought to my attention by P.
Noyes and H. Doughty.

18.2 Age Discretization

Milne’s spacetime occupied the interior of a forward light cone. The EQT
‘path spacetime’ factorizes a forward light cone interior into the product of
a curved 3-dimensional ‘boost space’ and a 1-dimensional ‘age space’. Age –
the Minkowski distance from the light cone vertex – is Lorentz invariant and
may be quantized compatibly with Milne’s principle of equivalence for all lo-
cations in 3-space. EQT applies Milne’s homogeneity (expressed by Lorentz
invariance) principle to the action-carrying process that underpins wave func-
tion propagation. Using the symbol τ for age and the 3-vector symbol β for a
(dimensionless) ‘boost’, infinitesimal displacements in ordinary 3-space and
in boost space are related by dx = τdβ. Writing the boost symbol as βu,
where u is a unit 3-vector, the curved metric of Milne’s continuous boost
space is dβ2 = dβ2 + sinh2 β du2.

‘Path spacetime’ – the habitat of pre-events – is the set of hyperboloids
whose age is a positive integer multiple of the EQT Planck scale unit δ.
Starting from one point on a hyperboloid, any other point on this hyperboloid
may be reached by a boost. Choice of frame amounts to choosing, at specified
age, a spatial location, i.e., to selecting a point in continuous boost space.

The light cone boundary of Milne’s spacetime corresponds to a ‘big bang’
from which age is measured. An ‘arrow of time’ is implicit; redshift and uni-
verse homogeneity are correlated. However, when Milne supposed age conti-
nuity and interpreted his continuous spacetime materialistically (rather than
through process), he encountered vanishing 4-dimensional curvature, incom-
patible with Einstein’s classical general relativistic representation of gravity.
Milne’s classical materialistic approach, while widely recognized as interest-
ing, was judged unviable. (It came to be called kinematic cosmology.)

The age discreteness of EQT renders spacetime curvature undefinable.
Gravity is represented a priori not by spacetime curvature but through
event-graph Feynman paths by the action-at-a-distance concept uncovered
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by Wheeler and Feynman in their 1949 representation of classical electro-
magnetism without fields [4]. Each event graph carries a symmetric Lorentz-
traceless gravitational second-rank tensor potential whose discrete sources
are the individual forward arc steps within the graph. The gravitational con-
stant is represented in EQT through the lightlike path step in age that defines
a ‘Planck unit of energy’. (The gravitational constant is of order δ2 in units
where � = c = 1.) The gravitational action of a forward arc step is the bilinear
inner product of its spacetime-displacement 4-vector and energy–momentum
4-vector (both lightlike and parallel to each other) with the gravitational
tensor potential at the step location. The large-scale meaning of classical
sub-lightlike material trajectories derives from stationary phase within wave
function propagation. EQT sub-lightlike velocity originates in quantum fluc-
tuation of lightlike velocity – zitterbewegung – as discussed below.

Whereas path spacetime is the set of hyperboloids whose age is a positive
integer multiple of the path age step δ, wave function spacetime is the rela-
tively tiny subset of these hyperboloids whose age is a multiple of the ‘global
step’ ∆, the ratio ∆/δ being a huge integer (2127 − 1?). The integer ratio
populates wave function spacetime by particle-interpretable quartets of pre-
events that allow Feynman paths to contact Hilbert space in an elementary
particle ‘coordinate basis’. A conjugate ‘momentum–spin basis’ is defined by
a norm-preserving Gelfand–Naimark (not Fourier) transform [5] that cannot
be discussed here.

18.3 Action

EQT path action, which determines wave function propagation, includes
three (separately Poincaré-invariant) components carried by event-graph arcs
(as opposed to action components carried by graph vertices). Gravitational
and electromagnetic actions-at-a-distance, carried by each particle-arc step,
are proportional to arc energy and arc electric charge, respectively. Arc en-
ergy is proportional to the mean rate of loop-quartet rotation around the
lightlike straight line in spacetime that is followed stepwise, in a forward arc
segment, by the quartet’s ‘center’. (The local frame spatial distance from the
quartet center to any non-centrally located quartet pre-event is cδ.) Quartet
rotation is characterized as that of an arc’s ‘transverse polarization’. A unit
spacelike polarization 4-vector attaches to the start and finish of any arc step.
The direction of the polarization rotation in an arc step, left or right, deter-
mines (lightlike) arc helicity. Because the rotation occurs in discrete angular
steps (of fixed magnitude as well as direction for any arc), the maximum rate
2π/δ implies a maximum energy (in the local frame) of the order of c2 times
the so-called Planck mass. The third arc-carried action component is kinetic
action, proportional to arc energy.

Weak (isospin) and strong (color) local components of action are carried
by certain event-graph vertices. At most of these vertices, pre-event loops
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are directed in a Chan–Paton pattern [6] that allows the EQT action pre-
scription to imitate the gauge-invariant CP-invariant Yang–Mills action [7]
of the Standard Model. Vertex action is generally proportional to Lorentz-
invariant inner products of the lightlike 4-velocities and transverse polariza-
tion 4-vectors belonging to the arcs terminating at the vertex. CP trans-
formation of an EQT Feynman path reverses all loop directions. (Although
the pre-event loop structure of all arcs and most vertices is symmetric with
respect to loop-direction reversal, vertices connecting a W arc to a pair of
quark arcs are asymmetric.)

18.4 Path Zitterbewegung

According to EQT, a ‘primitive’ rest mass arises dynamically from action-
less ‘zitterbewegung’ (zbw) events that reverse the lightlike velocity direction
of an arc while changing neither arc energy nor helicity nor electric charge
(nor color nor generation). Although self-action-at-a-distance is absent from
an individual arc (of single lightlike velocity), a succession of arcs connected
by zbw events carries gravitational and (if electrically charged) electromag-
netic action-at-a-distance between causally connected opposite-velocity for-
ward arc steps of the succession. In the absence of any action other than
kinetic and self-action-at-a-distance, a single elementary-particle wave func-
tion of definite momentum–spin that is some special superposition of two
opposite lightlike velocities – one parallel to the momentum and one antipar-
allel – can be a ‘stationary’ state. The ratio within the wave function of the
amplitudes for these opposite velocities determines an average sub-lightlike
velocity which, together with momentum magnitude, implies a ‘primitive’
rest mass.

Because the Hilbert space is a Fock space, the wave function of an ‘observ-
able’ particle includes products of several elementary-particle wave functions.
Measurable rest mass reflects multiparticle elementary off-shell constituents
of a single observable on-shell particle – roughly the equivalent of ‘mass renor-
malization’ in standard quantum field theory [7].

A familiar rest-mass meaning related to primitive rest mass is implicit in
Dirac’s equation for a single electron, once Dirac’s lightlike electron-velocity
operator, which commutes with the electron-location operator, is recognized
[8]. An ad hoc phenomenologically-motivated term in Dirac’s Hamiltonian,
which fails to commute with the velocity operator, reverses the lightlike ve-
locity and at the same time supplies rest-mass-generating action beyond the
kinetic action of lightlike motion. The term ‘zitterbewegung’ was coined by
Schrödinger to describe the Dirac lightlike-velocity fluctuation. Note that,
in contrast to the Dirac equation, the EQT representation of primitive rest
mass requires no extra arbitrary parameter. (Dirac failed in his attempt to
interpret a solution of his equation as a single-electron wave function because
finite-dimensional representations of the Lorentz group are not unitary. EQT
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employs the infinite-dimensional unitary representations found by Gelfand
and Naimark [5], which depict single elementary particles that may be off-
shell in both momentum and spin [9].)

In order to preserve the distinction between long- and short-range inter-
action, an EQT path constraint forbids graviton or photon zbw events. At
present no reason is seen to exclude gluon zbw. Gluons as well as neutrinos are
expected to exhibit a gravitationally-generated ‘primitive’ mass matrix. The
primitive rest masses of electrically-charged elementary particles are plausi-
bly dominated by electromagnetic self-action.

Beyond the scope of this paper is the difference between fermion and boson
zitterbewegung related to a ‘chirality’ carried by fermions but not by bosons
and to the difference between boson and fermion quartet structures (see ap-
pendices). We remark only that fermion-zbw chirality reversal involves fixed-
age (spacelike) tachyon arcs that do not cross wave-function hyperboloids
and that correspondingly are not represented by the Hilbert space. (Tachyon
arcs carry neither energy-electric-charge nor color-generation.) Not yet un-
derstood is the consequence of long-distance tachyon connection, within an
event graph, between different fermion-arc zbw successions.

18.5 Conclusion

I have sketched a quantum cosmology designed to span all ages after the Big
Bang and all scales between that of Planck and that of Hubble. The wave
function, representing matter, has its basis in process. Undiscussed has been
the arbitrariness residing in the initial wave function at age ∆. The ‘size’ of
the material universe has not been considered here, nor has the influence of
initial conditions on universe ‘self-knowability’ and capacity for ‘creativity’.
The proposal, however, accords gravity and electromagnetism a distinguished
status intended to enable universe self-awareness.

EQT requires four ingredients:

• A discretized path spacetime that includes a (much smaller) wave function
spacetime, allowing paths to provide the basis for Hilbert space.

• Path constraints that allow an event graph to contact a wave function.
• Specification of the event-graph action that determines wave function

propagation.
• The wave function initial (‘Big Bang’) condition.

This report has touched on the first three of these ingredients.
EQT lifts a notion from Feynman graphs in order to connect wave func-

tions to paths. Feynman paths and Feynman graphs are correctly regarded
as completely different, the latter being tied to a perturbation approxima-
tion while the former is a general concept. Feynman graphs, however, by
uncovering the idea that ‘positrons are like electrons moving backward in
time’, led Feynman to observe that a single ‘curve’ meandering backward



358 Geoffrey F. Chew

and forward in time, as well as in space, might represent all the electrons and
positrons in the universe. EQT seizes on Feynman’s insight to find in individ-
ual classical closed event graphs a basis for the entire universe which, with
zitterbewegung, creates primitive rest mass and offers a quantum explanation
of general relativity’s classical spacetime curvature.

EQT replaces Copenhagen ‘laboratory wave function collapse’ by global
wave function evolution of coherent states that ‘record the past’, in the
sense that a coherent soft (i.e., beyond measurement scale) off-shell graviton–
photon state is a classical field which reflects its material sources. Despite the
resemblance with the Standard Model in its Hilbert space (an elementary
particle Fock space) and kinetic plus event-carried (local) action, the EQT
paths whose actions determine wave function propagation do more than lo-
cally propagate and collide particles. Here are some examples of nonlocal
(holistic) EQT features:

• Gravitational action-at-a-distance, including future as well as past
‘sources’ (within process, not within matter) provides global influences
that preclude matter isolation even though permitting identification of
‘separate pieces of matter’.

• Fermion zitterbewegung involves tachyon arcs that ‘instantaneously’ cor-
relate pieces of matter with arbitrarily large spatial separation.

• The absence of local action in a gravitational or electromagnetic event
(where a graviton or photon arc terminates) allows such events to be ‘gen-
tle’, disturbing observable matter only slightly while nevertheless ‘record-
ing’ the event in EQT’s coherent state ‘information reservoir’. The reser-
voir classical field has frequencies below the measurement scale set by
the wave function global age step. This thereby enables the miracle of
information accumulated with negligible material disturbance.

An essential future step for EQT is the development of approximation strate-
gies that will allow the successes of continuous-time theories to be reproduced.
Only the outlines of such strategies, based on the large ratios of Hubble scale
to measurement scale and of the latter to Planck scale, have so far been
conceived. In this respect an effort is underway to quantify the accuracy of
‘observation reproducibility’ – the foundation of science even though exact
reproducibility of any measurement is impossible in an expanding universe.
Through special relativity, Einstein enlarged the meaning of reproducible ob-
servation from observations related by the spacetime displacement group to
those related by the so-called Poincaré group. Understanding the accuracy of
special relativity in EQT may require some Mach-like meaning for ‘isolated
observable matter’ defined by a ‘sea of process’. Also required, of course, is
a meaning for measurement.

The huge ratios explicitly recognized by EQT reduce a variety of hith-
erto sacrosanct ideas (such as measurement reproducibility) to the status of
extremely accurate approximations. Do any sacred principles of physics sur-
vive? Undisturbed are electric charge and angular momentum conservation
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and Pauli’s symmetry that defines ‘identical particles’, a notion evidently
prerequisite to any meaning for reproducible measurement.
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18.6 Appendixes

Quartets of pre-events provide an elementary particle basis for EQT Hilbert
space. A wave function pre-event is labeled continuously by its spatial location
and discretely by a 2-valued ‘pre-event spin’ (e-spin) index plus 3-valued
‘electro’ index – labels that, with symmetry constraints on a quartet’s internal
wave function, define isospin, color, generation, and chirality in a manner
compatible with boson–fermion distinction.

Internal quartet wave functions distinguish gravitons, electroweak vector
bosons (30◦ elementary Weinberg angle), gluons, GUT bosons and 3 gen-
erations of quarks and leptons. Fermion chirality reversal combines loop-
direction inversion with ‘conjugation’ of e-spin and electro labels. Although
charged lepton generations are distinguished by conserved e-spin, two of the
3 neutrino generations may mix and third-generation neutrino may mix with
antineutrino. Elementary quark generations match lepton generations, but
e-spin entangles color with quark generation in quark–W coupling.

Appendix A: Pre-Event Labels
and Associated Particle Quantum Numbers

Denoting by the symbols +, 0, − the three alternative values of the electro
label on a path loop and by the symbols ↑, ↓ the two values of the e-spin
label, a 6-valued index denoted p designates the index pair attached to a
loop. To each different value of p a different integer may be associated so that
conjugation, defined as the set of label interchanges, + ↔ −, 0 ↔ 0, ↑↔↓,
changes the sign of p. (Conjugation resembles the operation called charge
conjugation in standard particle physics.) We employ the 6 integers ±1, ±2,
±3 such that

p = +1 for + ↑ , p = +2 for − ↑ , p = +3 for 0 ↑ ,

p = −1 for − ↓ , p = −2 for + ↓ , p = −3 for 0 ↓ .
(18.1)

Continuity of p throughout any path loop yields a separate conservation rule
for each of the 6 different p labels. According to Feynman’s graph principle,
a conserved quantity proceeding backward in age counts as the negative of
this quantity when moving forward. Adapted to a discrete directed age loop,
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Feynman’s rule attaches to a pre-event, along a loop of index p, a quantity
Np = +1 if the preceding pre-event occurs at an earlier age and the following
pre-event at a later age. In the converse situation, Np = −1. To an age-
turnaround pre-event whose preceding and following pre-events share the
same age, the assignment is Np = 0. (A pre-event belonging to a loop with
index p is assigned Np′ = 0 for p′ �= p.) For any path, summation over all
pre-events with equal age then yields zero at any age for each of 6 total-Np

values.
Any linear combination of the 6 conserved Np values is also conserved. It

is useful to define the 6 linearly-independent combinations

N±
|p| ≡ N|p| ±N−|p| , |p| = 1, 2, 3 , (18.2)

because the requirement that tachyon arcs be ‘self-conjugate’, together with
Np conservation in any event for all 6 values of p, then means that any
N−

|p| is conserved in individual events by the participating particle arcs. An
N+

|p| (transportable by tachyon as well as by particle arcs) is only globally
conserved by particle arcs.

The two ‘observable-via-particles’ locally-conserved quantum numbers
emphasized in what follows – electric charge and e-spin, superselected by
elementary particle wave functions – are

Q ≡ 1
3
(N−

1 −N−
2 ) , e ≡ 1

2
(N−

1 + N−
2 + N−

3 ) . (18.3)

Any function of the 3 quantum numbers N−
|p| that is not determined by Q

and e fails to be superselected even though locally conserved. We identify
Q with elementary particle electric charge in units of charge carried by an
elementary positron. The quantity e will relate to color and generation.

The quantum number

M ≡ N+
1 + N+

2 + N+
3 , (18.4)

which takes the value +1 for any pre-event within an age-advancing loop
segment and the value −1 within any age-retreating loop segment, has zero
aggregate value for any arc. Although M is invisible within Hilbert space,
the internal structure that distinguishes elementary particle types, as well as
the structure of events, depends on M .

Appendix B: Arc Structure

An arc combines two age-advancing path segments with two age-retreating
segments in a ‘rigid body’ configuration whose ‘center’ (defined below), in for-
ward arc steps as age increases, follows an age-independent lightlike direction
in spacetime. Because arc crossing of a wave function hyperboloid occurs be-
tween two successive forward steps, EQT Hilbert space is built from forward
arc-step quartets of common-age pre-events.
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Two distinct spatial structures allow quartets to be classified as either
‘boson’ or ‘fermion’. In the local frame of a boson quartet center, the direction
of the displacement between the two age-advancing pre-events is orthogonal
to the displacement between the two age-retreating pre-events, both these
‘transverse’ displacements being orthogonal to the ‘longitudinal’ direction
followed by the arc’s center. The distance from either a boson or a fermion
quartet center of any pre-event not located at the center is cδ. In a fermion
quartet either the (M = +2) age-advancing pre-event pair or the (M = −2)
age-retreating pair are located at the quartet center. We characterize the
coincident pre-event pair at the arc center as ‘pinched’.

Quartets of loop labels are constrained. Uniquely among particle arcs,
graviton arcs have all 4 electrolabels 0. To describe general constraints, we
denote by the term ‘arc half’ the pair of age-advancing (positive M) loop
segments and by ‘antihalf’ the age-retreating (negative M) pair. Because
any tachyon-arc label pair is self-conjugate, tachyon-half electro labels (half
or antihalf) are 00 or +− while e-spin labels are ↑↓. For non-graviton particle
arcs, one electro-label constraint requires both half and antihalf electro-label
pairs to be within the label-pair subset (++, −0, +−) or within the conjugate
subset (−−, +0, −+), allowing a total of only 18 different particle electro
labelings. Further constraints on a pinched half or antihalf of a fermionic
particle arc exclude therefrom the +− label pair under all circumstances and
the 0 label unless the accompanying (unpinched) antihalf or half carries the
+− label pair. The foregoing electro-label particle-arc constraints relate to
the feature that photons couple to electric charge, described in Appendix
G. E-spin labels on particle arcs are unconstrained apart from the general
requirement that the two 6-valued labels carried by any unpinched pre-event
pair in any arc must differ.

Appendix C: Remarks about EQT Hilbert Space

EQT Hilbert space is based on those pre-event quartets located in wave
function spacetime – a minuscule fraction of all pre-events along a path. Six
continuous (‘Lorentz-space’) parameters, that locate a quartet center on its
wave-function hyperboloid and orient the quartet about its center, define
an infinite-dimensional single-particle ‘external’ Hilbert space discussed in
[9]. The space is constrained by a collection of Pauli-like symmetries, the
unfamiliar symmetries being detailed in Appendix E. The usual symmetries
make the EQT Hilbert space into a Fock space. Labels on the 4 pre-events of a
quartet (from several different path loops) spawn particle quantum numbers,
the two distinct arc structures described in Appendix B allowing quartets to
be classified either as ‘boson’ or as ‘fermion’.

These appendices, via symmetry constraints and superselection rules for a
finite-dimensional ‘internal’ quartet Hilbert space, define elementary-particle
‘types’ through label structure. The 2-valued e-spin label spawns color and
generation, while the 3-valued electro-label generates isospin as well as electric
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charge. The finite number of distinct particle types will be seen to match,
apart from elementary scalars, a GUT extension of the Standard Model.

Appendix D: Quartet Internal Wave Function

Appendix A introduced the symbol p for the 6-valued pre-event label pair.
The ‘internal’ basis states available to represent an elementary particle, before
symmetry constraints are imposed, may be denoted algebraically by{

p′
1, p

′
2| · |p1, p2

}
,

where labels within the bracket |
}

are those of M = +1 (age-advancing)
pre-events, while labels within the antibracket

{
| refer to M = −1 (age-

retreating) pre-events. (The foregoing direct-product notation must not be
confused with Dirac’s bras and kets.)

The order of the two labels within a bracket is given meaning for an
unpinched half or antihalf by the different spatial locations of the two pre-
events. As indicated earlier, these appendices ignore 6 continuous external
parameters that spatially locate and orient the quartet. For a fixed set of
pre-event spatial locations, there are 2 possible permutations of the positive
M or negative M labels. Because any unpinched label pair must differ, label
transposition in an unpinched bracket leads to a different quartet of the same
‘external’ spatial orientation. A symmetry to be imposed makes it unneces-
sary to be more specific. In a pinched bracket, label order is meaningless.

Using a single label h for the (ordered) label pair belonging to an entire
half or antihalf, the internal single-particle wave function aspect of the M -
reversing operation conventionally designated in particle physics as CP is{

h′| · |h
}
←→

{
h| · |h′} . (18.5)

We shall refer to the wave function operation (18.5) as inversion. (The path
meaning of inversion, applicable to both particle and tachyonic arcs, is re-
versal of loop directions while maintaining pre-event labels and locations in
path spacetime. Event structure is not always inversion symmetric [10].)

The EQT meaning of chirality involves both inversion and the label con-
jugation defined above in Appendix A. A zbw event generating fermionic
primitive rest mass (by velocity reversal) combines inversion with label con-
jugation [10]. For the photon wave function, we shall find that label conjuga-
tion corresponds to the operation standardly called charge conjugation. But
generally the adjective ‘charge’ may be misleading because e-spin is reversed
as well as electro label. Generation and color are involved.

There will be frequent reference in these appendices to label conjugation.
The effect of conjugation on a half label will be denoted h ↔ h∗ (h∗∗ = h).
Elementary fermion chirality reversal combines conjugation with inversion in
an operation
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h′| · |h

}
←→

{
h∗| · |h′∗} , (18.6)

which leaves the two locally-conserved elementary-particle ‘quantum num-
bers’ Q and e unchanged.

Appendix E: Quantum Superposition of Quartets.
Quartet–Half Symmetry Constraint

Subject to Q, e superselection and maintenance of the boson–fermion dis-
tinction, internally different quartet wave functions are superposable. Ele-
mentary particles belong to special symmetrical superpositions of different
quartet patterns that share the same locally-conserved quantum numbers Q
and e. Symmetry of quartet internal superposition segregates EQT elemen-
tary particles into ‘families’.

EQT imposes a ‘Pauli-type’ constraint on half and antihalf wave functions
in the quartet internal Hilbert space. Although these appendices ignore the
external wave function, double covering of the Lorentz group is rendered
consistent with classical EQT paths by the 2 permutations of the ‘oppositely’-
located labels on an unpinched half or antihalf. Distinguishability of these
2 labels permits a requirement that any unpinched half or antihalf wave
function be antisymmetric under label interchange. In contrast, a pinched half
wave function (where label permutation is meaningless) is label-symmetric.
(Pre-event label interchange within either half or antihalf of a quartet not only
leaves Q and e unchanged but fails to alter path action.) Internal symmetry
is a Hilbert space constraint supplementing those constraints inherited from
an arc’s classical structure. The external wave function exhibits the usual
Pauli symmetry (antisymmetry) that defines ‘identical particles’.

Tailored to Yang–Mills couplings [7] is the matrix character of the half–
antihalf product basis for the internal Hilbert space that is exhibited by the
full-state direct-product notation

{
φ(h)| · |ψ(h)

}
. The antihalf wave func-

tion φ and the half wave function ψ individually exhibit either symmetric
(pinched) or antisymmetric (unpinched) dependence on a pair of p labels.
Denoting half symmetry (antisymmetry) by a plus (minus) sign, all elemen-
tary vector-boson internal wave functions exhibit the symmetry structure{
−| · |−

}
, while elementary fermions and antifermions enjoy the symmetry

structures
{
− | · |+

}
or
{

+ | · | −
}
.

We reduce the internal Hilbert space by requiring factorization of electro
and e-spin half and antihalf subspaces, with electro and e-spin basis states
that are separately symmetric or antisymmetric under transposition. The 2-
valuedness of e-spin leads to the familiar antisymmetric singlet and symmetric
triplet of half states, displayed below in (18.11) and (18.12). Despite the 3-
valuedness of the electro label, the label constraints of Appendix B allow
(18.8)–(18.10) to define an antisymmetric singlet of zero (net) electric charge
and a pair of symmetric doublets each of whose 4 members carries nonzero
electric charge.
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Elementary particle internal factorization of electro and e-spin quantum
correlations casts half states into 3 categories denotable by the M = +2
symbols

| −+
}

, |+−
}

, |+ +
}

, (18.7)

the first two of these categories being unpinched, while the third is pinched.
The left index in (18.7) denotes electro label symmetry and the right index
e-spin symmetry. Inversion generates a matching set of M = −2 antihalf cat-
egories. (Our antihalf convention is that the left index gives e-spin symmetry
while the right index gives electro symmetry.) Absence of spatial extension
in a pinched half or antihalf precludes wave functions with −− symmetry
structure.

The boson sectors have symmetry structures
{
+−| · |−+

}
,
{
−+| · |+−

}
,

and
{

+ −| · | + −
}
, plus the latter’s inverse, while fermion structures are{

+ +| · | − +
}
, and

{
+ +| · | + −

}
, plus inverses. As summarized by

Table 18.1, whose content will be gradually unpacked as these appendices
unfold, the foregoing sectors embrace, respectively, gluons, gravitons plus
electroweak vector bosons, GUT bosons, quarks and leptons (the fermions
being of either L or R chirality). E-spin will be found manifested as color in
an unpinched half or antihalf with electrolabels +− and as generation in any
pinched half or antihalf. An unpinched half with electrolabels other than +−
carries neither color nor generation.

The foregoing notation displays parallelism between unpinched fermion
halves and vector boson halves. According to Table 18.1, the unpinched half
of a quark or antiquark has the structure of a gluon half, while the unpinched
half of a lepton or antilepton shares the structure of an electroweak boson
half. One half of a GUT vector boson matches an unpinched lepton half; the
other matches an unpinched quark half. Half matching enables the Chan–
Paton structure of events with Yang–Mills action [6, 7].

Appendix F: Half and Antihalf Electro and E-spin Multiplets

Factoring electro space from e-spin space, the unique self-conjugate anti-
symmetric (M = +2) electro half state is

|0
}
≡
∣∣(1/2)1/2[(+−)− (−+)

]}
, Q = 0 , (18.8)

with |0∗} = −|0
}
. [In the present section symbols such as (+−) and (−+)

describe electro labels, not the half symmetry of Appendix E.] The (M = −2)
inverse of (18.8) is denoted

{
0|. We shall find (18.8) to behave, in standard

parlance, as an isosinglet.
The electro-doublet symbol |2

}
means the pair of charge-symmetric half

states
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Table 18.1. Standard Model sectors

Sector Quartet symmetry Q e

Vector boson

Gluon
{

+ −| · | − +
}

0 2, 1, 0, −1, −2

Electroweak
{ − +| · | + −}

1, 0, 0, −1 0

GUT antiboson
{ − +| · | − +

} −2/3, +1/3 +1, 0, −1

GUT boson
{

+ −| · | + −}
+2/3, −1/3 −1, 0, +1

Fermion

Quark

{
+ −| · | + +

}

∗{
+ +| · | − +

}∗ +2/3, −1/3 2, 1, 0, −1, −2

Antiquark

{
+ +| · | − +

}

∗{
+ −| · | + +

}∗ −2/3, +1/3 −2, −1, 0, 1, 2

Lepton

{
+ +| · | + −}

∗{ − +| · | + +
}∗ 0, −1 −1, 0, +1

Antilepton

{ − +| · | + +
}

∗{
+ +| · | + −}∗ 0, +1 +1, 0, −1

| ⇑
}
≡ |+ +

}
, Q = +2/3 ,

| ⇓
}
≡
∣∣(1/2)1/2

[
(−0) + (0−)

]}
, Q = −1/3 .

(18.9)

The conjugate doublet |2∗} is

| ⇑∗ } ≡ | − −} , Q = −2/3 ,

| ⇓∗ } ≡ ∣∣(1/2)1/2
[
(+0) + (0+)

]}
, Q = +1/3 .

(18.10)

Although electric charges of the M = +2 doublet |2
}

are the same as for
the M = −2 conjugate antidoublet

{
2∗|, these half- and antihalf-doublets

are distinct. Associating chirality reversal with (18.6) implies that if leptons
and antileptons of L chirality carry the unstarred doublet, then those of R
chirality carry the starred doublet (Table 18.2).

In either half or antihalf, an electrodoublet provides a basis for an SU(2)
irreducible representation. The meaning for SU(2)L symmetry is discussed
below.

The e = 0 transposition-antisymmetric self-conjugate e-spin singlet half
state is

|1
}
≡
∣∣(1/2)1/2[ ↑↓ − ↓↑ ]} , (18.11)

while the symmetric e-spin triplet |3
}

e
is defined to be the set of states
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Table 18.2. Elementary lepton wave functions. Halves with label 3 or 3∗ are
pinched

Q Wave function Elementary leptons

0
{
3, ⇑ | · | ⇑, 1

}
(νe, νµ, ντ)L

−1
{
3, ⇑ | · | ⇓, 1

}
(e−, µ−, τ−)L

0
{
1, ⇑ | · | ⇑, 3

}
(ν̄e, ν̄µ, ν̄τ)L

+1
{
1, ⇓ | · | ⇑, 3

}
(e+, µ+, τ+)L

0
{
1∗, ⇑∗ | · | ⇑∗, 3∗}

(νe, νµ, ντ)R
−1

{
1∗, ⇓∗ | · | ⇑∗, 3∗}

(e−, µ−, τ−)R

0
{
3∗, ⇑∗ | · | ⇑∗, 1∗}

(ν̄e, ν̄µ, ν̄τ)R
+1

{
3∗, ⇑∗ | · | ⇓∗, 1∗}

(e+, µ+, τ+)R

|3
}

+1 ≡ | ↑↑
}

, |3
}

0 ≡
∣∣(1/2)1/2[ ↑↓ + ↓↑

]}
, |3

}
−1 ≡ | ↓↓

}
. (18.12)

Notice that, under conjugation, |1∗} = −|1
}

while |3∗}
e

= |3
}

−e
. Inversion

defines matching antihalf states
{
1|, e

{
3| and their conjugates.

Appendix G: Standard Families of Elementary Particles

Electroweak Bosons

Using the notation of Table 18.1, the electro label particle-arc constraints of
Appendix B allow

{
−+| · |+−

}
e = 0 quartet wave functions,

{
1, 2| · |2, 1

}
or
{
1∗, 2∗| · |2∗, 1∗}. Members of this family have Q values +1, 0, 0,−1.

Four superpositions will be found to match the Standard Model’s electroweak
vector boson sector. Throughout the present section, for notational economy,
we factor out and suppress designation of the e-spin-singlet wave function{
1| · |1

}
=
{
1∗| · |1∗}. (Electroweak vector bosons carry neither color

nor generation.) A graviton has the same e-spin structure as an electroweak
boson but the value 0 for all four of its electro labels – not the product of the
antisymmetric electro label half wave functions

{
0| · |0

}
defined by (18.8).

Central to EQT Hilbert space, because electric charge is central, is the
Q = 0 elementary photon wave function

photon elem =
(

1
2

)1/2 {
⇑ | · | ⇑

}
−
(

1
2

)1/2 {
⇑∗ | · | ⇑∗ } . (18.13)

Any photon arc (beginning and ending in an electromagnetic event) may
contact the wave function (18.13). The special structure of (18.13) – absence
of electro label 0, inversion symmetry, conjugation antisymmetry and e-spin-
singlet separately in half and antihalf – allows photon coupling to electric
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charge, wherever located [10]. This feature we presume (leaning on gauge field
theory [7]) will maintain zero rest mass for physical photons when interactions
between elementary particles are considered.

Standard Model charged members of the electroweak family distinguish,
through their couplings, between lepton chiral labels L and R – the charged
vector bosons coupling only to L chirality (parity violation). Although EQT
must eventually explain the correlation between chirality, helicity and electro
labels, this appendix will be limited to duplicating the content of the Standard
Model. Supposing (see Table 18.2) the unpinched halves of standard L leptons
to be the electrodoublet |2

}
, the corresponding elementary charged vector

bosons have the CP inverse isospin wave functions

W+
elem =

{
⇓ | · | ⇑

}
, Q = +1 ,

W−
elem =

{
⇑ | · | ⇓

}
, Q = −1 .

(18.14)

An SU(2)L isotriplet of vector bosons is completed by

W 0
elem =

(
1
2

)1/2 {
⇑ | · | ⇑

}
−
(

1
2

)1/2 {
⇓ | · | ⇓

}
, Q = 0 , (18.15)

but W 0
elem is not orthogonal to the elementary photon (18.13). The Q = 0

state,

Z0
elem =

(
1
6

)1/2{
⇑ | · | ⇑

}
−
(

2
3

)1/2{
⇓ | · | ⇓

}
+
(

1
6

)1/2{
⇑∗ | · | ⇑∗ } ,

(18.16)

orthogonal to the photon and such that

W 0
elem =

(
3
4

)1/2

Z0
elem +

1
2
photon elem , (18.17)

(30◦ elementary Weinberg angle) is the elementary EQT counterpart of the
Standard Model neutral weak vector boson.

Conjugating labels in the foregoing formulas shows inconsistency of a
triplet of charged elementary bosons that couple to the (Table 18.2) conjugate
2∗ doublet of R leptons. Although the charged W and its ‘conjugate’ would
be orthogonal to each other, the state (18.16) and its conjugate are seen not
to be mutually orthogonal. The photon wave function (18.13) admits only
one (weak) vector boson isotriplet.

What is SU(2)L symmetry? The ‘halved’ structure of EQT elementary
particles allows the Chan–Paton event pattern [6, 7], which leads to SU(N)
symmetry of localized action when each half of each event-involved arc carries
one of N action-equivalent values of some index. Although the two half labels
⇑ and ⇓ are inequivalent to the extent of carrying different quantities of elec-
tric charge, EQT electromagnetic path action is nonlocal. Weak path action,
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except for quark–W coupling, is localized in SU(2)L-symmetric Chan–Paton
events [10]. Many aspects of Glashow–Weinberg–Salam theory [7] promise to
survive, although not the idea of an exact SU(2)L symmetry that is sponta-
neously broken via elementary scalars. Zero-helicity elementary particles are
neither present in EQT nor needed for symmetry breaking.

Gluons

A Q = 0 isosinglet
{

+ −| · | − +
}

family of elementary vector bosons
associates with the quartet states e′

{
3, 0| · |0, 3

}
e

that Chan–Paton couple
to each other and to unpinched quark halves. Because the reflection (18.6)
merely permutes common e members within this family of vector bosons,
there is coupling to both quark chiralities. Although electric charge vanishes,
the 9-member family displays e values 2, 1, 1, 0, 0, 0,−1,−1,−2.

A symmetric superposition of the three zero-e states (a superposition
unaltered either by conjugation or inversion) emerges as ‘special’ once it is
appreciated that e-spin triplet ⊗ antitriplet wave functions correspond to a
3 × 3 matrix. The special state corresponds to the matrix trace. The group
SU(3) is isomorphic to the group of unitary unimodular 3×3 matrices, group
generators comprising an octet of traceless Hermitian matrices. Because QCD
gluons transform in parallel with the generator octet, splitting from the EQT
e-spin nonet, a singlet corresponding to the matrix trace allows an orthogonal
octet of traceless e-spin states to associate with standard gluons.

We may regard the |0, 3
}

e
e-spin triplet of ‘half’ states and the inverse

antitriplet as representing 3 ‘colors’ (e = 0,±1). E-spin SU(2) action equiva-
lence of the 3 colors, by Chan–Paton reasoning, generates SU(3) color sym-
metry. (In contrast to electrodoublet halves, conjugation of e-spin triplet
halves yields nothing new.)

GUT Bosons

A final (12-member) boson family, that can be associated with the GUT
extension of the Standard Model, is classifiable as

{
3, 0| · |2, 1

}
and
{
1, 2| ·

|0, 3
}
. One half is an isodoublet and the other a color triplet. Electric charges

are ±2/3, ±1/3, while e = 0,±1. Because the halves match those building the
W triplet and the gluon octet, Chan–Paton vector couplings (boson events)
exhibit SU(5) symmetry. GUT bosons couple to lepton–quark pairs [10].

Quarks

A 72-member elementary-fermion family has wave functions classifiable as{
3, 0| · |2, 3

}
,
{
3, 2| · |0, 3

}
,
{
3∗, 2∗| · |0∗, 3∗}, {3∗, 0∗| · |2∗, 3∗}. An

unpinched half or antihalf with electro (pair) label 0 or 0∗ carries color and
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allows Yang–Mills SU(3)-symmetric coupling to gluons. As shown in Ta-
ble 18.3, inversion (i.e., CP) connects L antiquarks with L quarks and R
antiquarks with R quarks. (Quarks have electric charge +2/3,−1/3 while
antiquarks have Q = −2/3, +1/3.) The chirality assignments of this table re-
flect the W–quark events of [10]. The action of these events, still under study,
may deviate from the Standard Model because both pinched and unpinched
quark halves are involved.

Table 18.3. Elementary quark wave functions. Halves with isospin are pinched.
Each quark comes with one of 3 colors carried by its unpinched half

Q Wave function Elementary quarks

+2/3
{
3∗, ⇑∗ | · |0∗, 3∗}

(u, c, t)L
−1/3

{
3, 0| · | ⇓, 3

}
(d, s, b)L

−2/3
{
3∗, 0∗| · | ⇑∗, 3∗}

(ū, c̄, t̄)L
+1/3

{
3, ⇓ | · |0, 3

}
(d̄, s̄, b̄)L

+2/3
{
3, 0| · | ⇑, 3

}
(u, c, t)R

−1/3
{
3∗, ⇓∗ | · |0∗, 3∗}

(d, s, b)R

−2/3
{
3, ⇑ | · |0, 3

}
(ū, c̄, t̄)R

+1/3
{
3∗, 0∗| · | ⇓∗, 3∗}

(d̄, s̄, b̄)R

A ‘handed’ quark family is an e-spin nonet, the 3-valued e-spin of the
pinched half distinguishing 3 ‘elementary quark generations’. A separate pa-
per, dealing with chiral-fermion primitive rest mass, will consider a 3 × 3
generation-mixing matrix. Although e is conserved, quark color and genera-
tion are not separately conserved in weak interactions of quarks. Mixing of
elementary quark generations occurs.

Leptons

Finally we identify leptons and antileptons as the 24-member chiral family
with wave functions

{
3,⇑ | · |2, 1

}
,
{
1, 2| · | ⇑, 3

}
,
{
3∗,⇑∗ | · |2∗, 1∗},{

1∗, 2∗| · | ⇑∗, 3∗}. The unpinched half (antihalf) of each unstarred state
is accessible, independently of the pinched half, for Yang–Mills L coupling
to W bosons. The pinched half (antihalf), like that of a quark, carries a 3-
valued generation label. As shown in Table 18.2, Standard Model elementary
leptons and antileptons (with both L and R neutrinos and antineutrinos)
match EQT basis quartet states. An Appendix B path constraint excludes a
⇓ or ⇓∗ pinched lepton half. (The pinched half is an isosinglet.)

The L and R families of Table 18.2 break as shown into isodoublet e-spin
triplets with Q = 0, 0,±1 and e = 0,±1. Lepton (pinched-half) generation
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associates with the three conserved e-spin values e = 0,±1. There may never-
theless be mixing of generation +1 neutrinos (antineutrinos) with generation
−1 antineutrinos (neutrinos), as well as mixing of 0-generation neutrinos and
antineutrinos. Despite each of the (negatively charged) leptons e, µ, τ carry-
ing a distinct and different value of conserved e, assignment of e to observed
charged leptons will not be attempted here.
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19 Quantum Phenomena of Biological Systems
as Documented by Biophotonics

Fritz-Albert Popp

In recent years more and more nations have started to invest millions of dol-
lars in a new scientific field called biophotonics. From 2004 on, 50 million
euros will be available in Germany alone for the development of this field,
where the properties of photons from living tissues are the subject of investi-
gation. Despite the fact that biological systems are known to react sensitively
to single quanta – the eye, for instance, in its capacity for registering single
photons with the highest possible resolution, is the most sensitive detector
system for photons in the visible range – for a long time the effects of weak
radiation from or onto living systems have been completely disregarded or
underestimated. However, with the increasing sensitivity of the detector sys-
tems and increasing insight into the sensitive interactions of living systems
and electromagnetic fields, it was gradually understood that nonthermal ef-
fects are likely to play a decisive role in understanding life. In particular, the
well-known suggestions of Fröhlich, Prigogine, and others, the development
of chaos theories, and even serious indications of macroscopic quantum co-
herence, opened the door to the new field of biophotonics, which includes not
only new technical methods for understanding life by light, but also goes back
to the roots of quantum theory in attempts to develop models of biological
regulation from the cellular level up to the formation of consciousness.

This paper is a review of the historical, biological, but mainly also the
physical roots of this branch of quantum biology, as demonstrated through
the example of the existence and the meaning of single photons in living
systems, not to be confused with ordinary heat radiation, but today called
biophotons.

19.1 History of Biophotonics

As an outstanding developmental biologist of the third decade of the 20th
century, the Russian scientist Alexander Gurwitsch [1, 2] tried to solve one
of the most crucial problems of biology, i.e., the ‘Gestaltbildungs’ problem,
which is the question of how living tissues transform and transfer informa-
tion about the size and shape of different organs. Chemical reactions do not
contain spatial or temporal patterns a priori. That was the reason why Gur-
witsch looked for a ‘morphogenetic field’ which could regulate cell growth
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and differentiation. In particular, in his so-called ‘Grundversuch’ (basic ex-
periment), he found ample indication for the involvement of photons in the
stimulation of cell division. Figure 19.1 shows this famous ‘Grundversuch’ of
A. Gurwitsch.

Fig. 19.1. Arrangement of Gurwitsch’s experiment with onion roots

He used the stem of an onion root as a ‘detector’ and the tip of another
one, very near to the detector but not actually touching it, as an ‘inductor’.
The subject of observation was the cell division rate at just the region of
the stem where the tip pointed onto it. It turned out that the cell growth in
this region of the stem did not change in the case of normal window glass
being squeezed between the inductor and detector. However, as soon as the
window glass was substituted with a quartz glass plate (which is transparent
for UV light of about 260 nm), the cell division rate (number of mitoses)
increased significantly. Gurwitsch interpreted this effect as the mitotic activ-
ity of single photons of about 260 nm triggering cell divisions. He called this
photon emission from biological systems mitogenetic radiation, and repeated
the experiments successfully with other biological systems, e.g., yeast.

However, despite confirmation of his results, also shown in a paper by the
later Nobel laureate D. Gabor [3], the scientific community forgot Gurwitsch‘s
work in view of:

• some (inessential) objections that came up,
• the rather difficult experimental work in this field involving a lack of

appropriate photon-counting systems,
• a fast-developing biochemistry which tried to explain cell growth in terms

of hormones and similar biomolecules.

Mitogenetic radiation was therefore considered as a kind of artifact.
After World War II, technical devices for measuring single photons im-

proved through the development of photomultipliers. Russian biophysicists,
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and others too, confirmed the existence of a ‘dark luminescence’ of all living
systems in the visible range, which could not be explained in terms of heat
radiation. The more viable work of the Russian groups who published mainly
in the Russian journal Biophysics (translated in the USA) has been reviewed
by Ruth [4]. However, in about 1970, the Russians stopped their activities in
this field and turned to more practical questions about photosynthesis. Apart
from biochemists in Poland associated with the researcher Slawinski [5], the
Russian work received almost no attention.

In the Western world ‘low-level luminescence’ of living systems never be-
came a serious subject of fashionable science. With the exception of groups
associated with Inaba (Japan) [6], Boveris (USA) [7], and Quickenden (Aus-
tralia) [8], this phenomenon of single photons from active biological tissues
was completely disregarded or even thrown into disrepute. In cases where
this non-thermal photon emission has been accepted at all, common opinion
reflected the statements of the Russian biophysicist Zhuravlev [9] and the
American chemist Seliger [10], i.e., their hypothesis that ‘weak biolumines-
cence’ originates from ‘imperfections’ in metabolic activity. This means that
photons should occasionally be emitted since the living system is in the sit-
uation of a permanently excited state which tends to fall back into thermal
equilibrium. Under these conditions, some scientists considered it obvious
that highly reactive compounds such as radicals and oxidation reactants are
the most likely candidates for photon sources.

19.2 Mitotic Figures

There are other biological phenomena that could have led to the realiza-
tion that photons exist in living cells [11–18]. One is the well-known fact
that about 105 chemical reactions per cell/per second take place. Without
electronic excitation of at least one of the reaction partners, this would be
impossible, and the number of thermal photons in the tiny reaction volume
of a cell could never suffice to explain this high reaction rate. At least a factor
of 1014 higher photon density in the optical range is necessary to provide this
huge amount of chemical reactivity. Another point is Erwin Schrödinger‘s
famous question concerning the surprisingly small number of aberrations in
the migration of biomolecules during cell division. Let us look, for example,
at the mitotic figures of a cell in mitosis (Fig. 19.2, left).

The only plausible answer to this question is the presence of cavity res-
onator waves (Fig. 19.2, right), which also provide the necessary stability of
the molecular arrangements as the guiding forces for their movement. We
calculated roughly the character of some transverse magnetic and electric
modes and their wavelengths under the particular boundary conditions and
for the dimensions of a cell, which may work as a conducting or dielectric
resonant cavity (or both). Table 19.1 displays the list of results [19], where
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Fig. 19.2. Left : Completely developed spindle apparatus of a fish (Corregonus) in
mitosis [38]. Right : Electric field of TM11 cavity modes in a right circular cylindri-
cal cavity. Comparison with Fig. 19.8 (left) shows that mitotic figures are striking
examples of long-lasting photon storage and coherent fields within biological sys-
tems [39]

the eigenvalues of the Bessel functions m, n correspond to the radial axis and
p to the length of a right-circular cylindrical cavity.

The resonance wavelengths are in the optical range between 300 and
700 nm. We show in Table 19.1 that the dynamical structures of the mi-
totic figures during cell division can be obtained by superposition of cavity
resonator waves of this kind. It indicates that the electromagnetic forces of
these patterns present the most likely answer to Schrödinger‘s question of
why the error rate vanishes.

It is evident that there is no workable way to measure these quasi-standing
light waves directly within the intracellular space. However, if one puts a
sufficiently highly sensitive photomultiplier in front of the living tissue, then
one expects to measure at least single photons in the visible range which
should display spatial and temporal correlations with biological functions,
i.e., cell growth.

In agreement with these considerations, around 1970, my interdisciplinary
group of physicists, biologists and physicians at the University in Marburg
(Germany) found significant correlations between some optical properties of
biomolecules (including polycyclic hydrocarbons) and their biological efficacy
(including carcinogenic activity) [4,11–14]. The basic question came up as to
whether the excited states of biomolecules could be responsible for the light
emission in biological tissues or whether a photon field in living systems is the



19 Quantum Phenomena of Biological Systems 375

Table 19.1. Modes of a cylindrical cavity of the same dimensions as typical cells

TE mode TM mode Wavelength Number of stored photons

mnp mnp λ/mn
E2

0εVres

8π
× 1010erg

111 690 4.900
010 574 7.787

112 571 5.929
011 546 4.099
012 481 4.655

113 462 7.323
211 438 1.589

013 410 5.451
212 402 1.730
114 379 8.910

110 360 2.939
213 358 1.943
011 111 353 3.004

014 349 6.407
012 112 333.5 3.181
311 323 0.778
115 318 10.606

regulator for the excitation of the biological matter. This problem is similar
to the question: Which came first? The chicken or the egg?

In contrast to the purely biochemical point of view, this search for the
original regulator could be approached in terms of information transfer in
biological systems supported by an increasing understanding of quantum op-
tics, in particular in the non-classical range. First, I will confine myself to
the most essential experimental results that have been obtained from this
time on by careful investigation of ‘low-level luminescence’ or, as we have
called this phenomenon, biophotons. Then, I will show that the more physi-
cal basis of interpretation provides a rather consistent picture of this univer-
sal phenomenon of weak photon emission from living systems. Lastly, some
theoretical implications will be discussed.

19.3 Measurements of Essential Properties of
Biophotons

Biophotons are measured by detectors based on photomultiplier techniques.
These instruments provide both high sensitivity and high resolution. Our
single photon counting system functions at a sensitivity of about 10−17 W
and a signal-to-noise ratio of at least 10. The cathode of an EMI 9558 QA
photomultiplier is sensitive within the range of 200 to 800 nm. The noise
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is reduced by inserting the multiplier into a cooling jacket, where copper
wool provides thermal contact. In addition, a grounding metal cylinder pro-
tects the multiplier from electric and magnetic fields. In order to prevent
the multiplier from freezing, the whole tube together with the cooling jacket
is kept in a vacuum. Thus, the quartz glass in front of the multiplier tube
has no thermal contact with the cooled cathode and cannot become covered
with moisture. An optimal cooling temperature is produced at about −30◦C.
With the use of a chopper, the equipment is able to register a real current
density of 2 photons/s cm2 at a significance level of 99.9% within 6 hr. A
detailed description of the method has been presented elsewhere [4]. Figure
19.3 displays an implementation of the equipment.

We only report here results that have been reproduced several times and
confirmed by different groups. Thus the essential characteristics of biophoton
emission may be summarized as follows [15–17]:

• The total intensity i from a few up to several hundred photons/s cm2

indicates that the phenomenon is quantum physical, since fewer than
about 100 photons are ever present in the photon field under investigation.

• The spectral intensity i(ν) never displays small peaks around definite fre-
quencies ν. Rather, the quite flat spectral distribution has to be assigned
to a non-equilibrium system whose excitation temperature θ(ν) increases
linearly with the frequency ν. This means that the occupation probability
f(ν) of the responsible excited states does not follow a Boltzmann distri-
bution f(ν) = exp(−hν/kT ), but the rule f(ν) = constant (Fig. 19.4).

• The probability p(n, ∆t) of registering n biophotons (n = 0, 1, 2, . . . ) in
a preset time interval ∆t follows, under ergodic conditions, a Poissonian
distribution surprisingly accurately: exp(−〈n〉)〈n〉n/n!, where 〈n〉 is the
mean value of n over ∆t. This holds true at least for time intervals ∆t
down to 10−5 s. For shorter time intervals ∆t, no results are currently
available (see Fig. 19.5) [18].

• After excitation by monochromatic or white light, the ‘delayed lumines-
cence’ of every biological system relaxes quite slowly and continuously
down to ‘spontaneous’ biophoton emission, not according to an exponen-
tial function, but with a strong relationship to a hyperbolic-like (1/t)
function, where t is the time after excitation (Fig. 19.6).

• The optical extinction coefficient of biophotons passing through thin lay-
ers of sea sand and soya cells of various thickness can have values of at
least one order of magnitude lower than that of artificial light with com-
parable intensity and spectral distribution, indicating that this difference
cannot be explained in terms of wavelength dependence on extinction [20].

• The biophoton emission displays the typical temperature dependence of
physiological functions, such as membrane permeability, glycolysis, and
many others. This means that with increasing temperature one gets over-
shoot reactions, while with decreasing temperature an undershoot re-
sponse may take place. The resulting ‘temperature hysteresis loops’ of
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Fig. 19.3. Measuring equipment. PM photomultiplier, CS chopper disc, CG hous-
ing of chopper disc, E ellipsoid, F filters, FB Faraday cup, FH filter holder, G lamp,
K test quartz glass, Kl flap, L ball bearing, KM cooling jacket, KW copper wool,
MM metal cylinder, N network, PW photosensitive resistor, QP quartz glass, S
slide to close ellipsoid, SK rod to move up test glass, SM, UG geared motor, SS
sector discs

biophoton emission (Fig. 19.7) can be described by a Curie–Weiss law
dependence [21].

• Reactions to stress are frequently indicated by an increase in biophoton
emission.

• There is evidence that the conformational states of DNA influence bio-
photon emission. This has been demonstrated, for instance, by the inter-
calation of ethidium bromide (EB) into DNA (Fig. 19.8) According to
the winding up and renewed unwinding of DNA by increasing concentra-
tions of EB, the biophoton emission intensifies and drops down in a rather
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Fig. 19.4. In the case of average occupation numbers, we obtain an f = const.
distribution which displays increasing deviation from the Boltzmann distribution
with increasing frequency

Fig. 19.5. The photocount statistics [= probability p(n, ∆t) of registering n counts
in a preset time interval ∆t, where n = 0, 1, 2, . . . ] is very similar for all biological
systems. If ∆t is so small that the mean number of photons in the field becomes
lower than about 100, p(n, ∆t) displays a Poissonian (and sometimes even a sub-
Poissonian) photocount distribution. There are 4 different examples with different
∆t. 100 measurement values have been used for evaluation in each case, where the
biological state was kept quasi-stationary
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Fig. 19.6. Instead of an exponential decay (dashed line), living cell populations
(here tissue of Bryophyllum daigremontanum) exhibit a hyperbolic relaxation of
photon intensity after exposure to white-light illumination. This holds for total as
well as for spectral observation (here at 676 ± 10 nm). Under ergodic conditions,
hyperbolic decay is a sufficient condition for perfect coherence

strong correlation. This and other results indicate that chromatine is one
of the most important sources of biophoton emission [22,23].

The Poissonian distribution of photocount statistics p(n, ∆t) under ergodic
conditions together with the hyperbolic relaxation function of delayed lumi-
nescence is a sufficient condition for a fully coherent photon field [24].

Thus we can conclude that biophotons originate from a coherent field.
Before we discuss the theoretical aspects, let us look at some biological phe-
nomena for which there is a rather plausible explanation but which cannot
be understood in terms of common molecular biology.

19.4 Biological Impacts

Once the coherence of biophotons is accepted, it is not difficult to predict a
variety of biological phenomena which deviate considerably from the ‘conven-
tional’ point of view, thus providing a reliable basis for examining the theory
and for obtaining a more profound understanding of biology.

It is evident that coherent fields give rise to destructive and constructive
interference, in which, considering the energy conservation law, zones of de-
structive interference have to be compensated for by zones of constructive
interference (Fig. 19.9). According to the theory due to R. Dicke [25], there
is a preference for constructive interference (‘super-radiance’) in the initial
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Fig. 19.7. The biophoton intensity of living tissues shows a hysteresis-like depen-
dence on the temperature T , if T is cyclically varied. The example shows etiolated
barley, 4 days of germination. The variation of temperature starts at T = 292 K with
the rate ∂T/∂t = 0.5 K/min. At T = 298.5 K the rate of temperature change is re-
versed to ∂T/∂t = −0.5 K/min, and again at T = 281.5 K with ∂T/∂t = 0.5 K/min.
This hysteresis-like behaviour of biophoton intensity can be accurately described
as a Curie–Weiss law dependence

phase of the interaction between radiation and non-randomly oriented mat-
ter of suitable size, while destructive interference (‘sub-radiance’) dominates
after longer periods of time. Consequently, there is always a considerable
probability of destructive interference in the biophoton emission of living
systems in the space between the living cells.

This means that the biophoton intensity of living matter cannot increase
linearly with the number of units, but has to follow the effective amplitudes
of the interference patterns of the biophoton field between living systems. A
striking example is the measurements on daphnia [26,27].

In darkness, daphnia magna Strauss were put into water at 18◦C within
the quartz cuvette of the biophoton measuring equipment. We altered the
numbers n of daphnia from 1 to 250, always selecting animals of about equal
size. After each alteration, the intensity of the biophoton emission was reg-
istered. Since every one of the inbred animals emits almost the same inten-
sity, one expects a dependence of biophoton intensity on the number of ani-
mals, like that displayed in Fig. 19.10a. After correction for self-absorption,
it should not significantly deviate from that of Fig. 19.10a. However, careful
measurements showed evidence of the results displayed in Fig. 19.10b.
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Fig. 19.8. (a) The more ethidium bromide (EB) is added, the more EB molecules
are inserted between the base pairs of DNA. This intercalation leads to the unfolding
of the helix structures of the DNA. The degree of this unfolding is experimentally
determined by the sedimentation of the DNA. After complete unfolding, further
insertion of EB leads to a new upwinding of the DNA helix in the opposite direction.
(b) The observation of the biophoton emission after adding EB shows (lower curve :
after 1 hr) that the intensity displays the same dependence on the concentration
as in (a). This typical profile becomes even more evident after longer measurement
time (middle curve: after 3 hr, upper curve: after 5 hr), which indicates a dependence
of the biophoton emission on the spatial structure of DNA
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construct ive interference 

destruct ive interference 

Fig. 19.9. If two waves interfere, the phase relations will in general lead to zones
where they amplify mutually (constructive interference) or alternate (destructive
interference). For coherent fields, these processes provide a basis for regulation and
communication

The results from interference patterns of biophotons between the animals
under investigation were as expected. There is a tendency for destructive
interference resulting in a lower intensity than expected from a linear increase.
The most efficient destruction of the biophoton field outside the animals is
obtained with about 110 animals, corresponding to the population density of
daphnia in free nature. This zone of most efficient destruction according to
the energy conservation law is at the same time the zone of highest efficacy
in ‘storing’ light within the animals.

To some extent one is justified in saying that living systems ‘suck’ the
light away in order to establish the most sensitive platform of communica-
tion. A more detailed description of this phenomenon has been presented
elsewhere [28]. Actually, this biocommunication by means of mutual interfer-
ence of the biophoton field provides necessary information about the equality
or difference of species, since similar animals have similar wave patterns. The
signal-to-noise ratio becomes optimized as soon as the wave patterns interfere
under maximum destruction between the communicating systems, since every
perturbation then leads to an increase (signal) that the connected systems
have to become aware of.

This rather ingenious means of biocommunication provides the basis for
orientation, swarming, formation, growth, differentiation, and ‘Gestaltbil-
dung’ in every biological system [17].

On the other hand, as soon as this capacity for coherent superposition of
modes of the biophoton field (where longer wavelengths may also be included)
breaks down, in the first stage of destruction, one expects a consequent in-
crease in biophoton emission (or delayed luminescence) with increasing num-
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(a) 

(b)

Fig. 19.10. (a) If photon emission from daphnia is dependent on mutual inter-
actions of the animals, one expects a linear increase with increasing number of
daphnia. This linearity will show a small decline for a large number of animals as
soon as self-absorbance has to be taken into account. (b) Mean values of the pho-
ton intensity of adolescent daphnia in 15 ml volume with the weighted standard
deviation
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Fig. 19.11. ‘Delayed luminescence’ from tumor cells (upper curve) and normal cells
(lower curve), as measured by Schamhart. The different curves can be approximated
by a non-linear (cubic) dependence of intensity on cell number n

bers of living units within a biological population. This was first confirmed
by D. Schamhart [29] (Fig. 19.11) and Scholz et al. [30] (Fig. 19.12). Actu-
ally, tumor cells lose the capacity for destructive interference according to
their loss of coherence. At the same time, delayed luminescence moves from
the hyperbolic-like relaxation of normal cells to the exponential one of tumor
cells.

A further striking example is the synchronous flickering of dinoflagellates
(Fig. 19.13). As soon as these animals see each other, their bioluminescent
flickering decreases and displays significantly more synchronous light pulses
than in the case when they are separated from each other [31]. This phe-
nomenon can be explained in terms of chemically amplified biophoton emis-
sion (which is called bioluminescence), establishing destructive interference
as soon as the animals ‘see each other’ and displaying synchronous pulses as
a consequence of the disruption of the destructive interference patterns.

Even bacteria seem to use this kind of ‘communication’ within their nu-
trition media [32]. Figure 19.14 displays one of the measurements on Ente-
rococcus faecalis. Growing bacteria emit such low biophoton intensity that
it cannot be registered, in contrast to the permanent photon emission of
their nutrition media. (It is impossible, by the way, to produce nutrition
media without spontaneous photon emission, originating from oxygenation
processes.) At a definite number of bacteria, the total intensity of the system
drops as a consequence of active photon absorption by the bacteria within
the medium. At higher numbers of bacteria, it may then happen that this
absorbance disappears.
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Fig. 19.12. The decay parameter of the hyperbolic approximation that is adjusted
to the relaxation dynamics of the afterglow of different cell suspensions after expo-
sure to weak white light illumination is shown versus cell density. The lower curve
displays the improvement of hyperbolic relaxation of normal amnion cells with in-
creasing cell density. The upper curve shows the opposite dependence exhibited by
malignant Wish cells. The three measurements on the right of the figure correspond
to the nutritive medium alone

Again, the destructive interference of bacteria within the coherence vol-
ume of the light-emitting nutrient molecules provides an explanation for this
obviously rather universal process in living nature.

It should be noted that growth regulation through biophoton emission has
to follow a law where in addition to linear stimulation (ṅ ∝ n) a nonlinear
inhibition (ṅ ∝ n2) has to take place. Consequently, the correlation between
growth rate and biophoton emission should be based on such a relationship.
Figure 19.15, as a result of measurements, confirms this connection.

Recently, it has been shown experimentally that in accordance with the
presumptions of Bajpai [33], and Gu and Li [17], living systems are even able
to emit squeezed light [34]. This leads to new grounds for establishing the
theoretical basis of biophoton emission.

19.5 Theoretical Approach

Let us start with a striking example of coherence which demonstrates the
whole essence of this subject. The leaf crassula ovata was excited by a He–Ne
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Fig. 19.13. If ones separates two cultures of dinoflagellates, their bioluminescence
flickering is completely asynchronous (left). As soon as they are in optical contact, a
large amount of flickering is synchronous (right). Stars indicate synchronous flashes
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Fig. 19.14. Growing bacteria in a culture medium, which by oxidative reactions
always emits light, absorb the light of the medium from a definite density. For
higher densities this absorbance may decrease
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Fig. 19.15. The biophoton intensity from 9 soy seeds increases during germination
in darkness, as shown on the left . The mass m during germination increases accord-
ing to the curve on the right , where the measured values (points with error bars)
have been approximated by the growth curve m = A/[B + (1 − B) exp(−Ct)],
with A = 1.3 g, corresponding to the mass of 9 soy seeds, B = 0.178, C =
2.6 × 10−4 min−1, and t representing time

laser (wavelength 632 nm) after 104 times attenuation by grey filters with
an intensity of about 106 photons/s. The exposure time was varied between
a few seconds up to 200 s. As a result, the delayed luminescence intensity
increased and, from about 100 s exposure time onwards, distinct oscillations
appear around the hyperbolic-like relaxation function I(t) = a/(1+bt), where
I(t) is the biophoton intensity after excitation at time t, and a and b are
constant values. Figure 19.16 shows a typical case of delayed luminescence
and Fig. 19.17 displays the oscillation around the hyperbolic-like relaxation
and a mathematical approximation in terms of the function

∆I(t) =
c

1 + dt
exp
[
iγ ln(1 + νt) + φ

]
,

where c = 30 000, d = 0.5, γ = π/ ln 3, ν = 0.5 and φ = 0.
This phenomenon of oscillations around the relaxation function of delayed

luminescence was observed and described for the first time in 1980 on the
leaf bryophyllum daigremontanum [15], and in 2002 it was shown in the case
of the single cell Acetabularia acetabulum that it can be traced back to a
coupling of coherent states of the biophoton field [35]. Recent investigations
on the ‘hyperbolic oscillations’ of the leaf crassula ovata showed evidence that
this phenomenon is not of molecular origin [36]. The light that corresponds
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Crassula ovata leaf af ter He-Ne-Laser-
exci tat ion (632nm; 200s)
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Fig. 19.16. Delayed Luminescence of a crassula ovata leaf, excited by a He–Ne
laser for 200 s. The relaxation function is approximated by a hyperbolic-like de-
cay function, satisfying the differential equation for coherent states. The residuum
displays ‘hyperbolic’ oscillations around the continuous decrease

to this photon emission has a wavelength of about 750 nm. But with the os-
cillation, the light emission itself disappears completely as soon as the leaf is
homogenized down to particles smaller than cellular size. Consequently, this
phenomenon reflects coherent and collective excitations on the cellular and
super-cellular levels, which might form the basis of intercellular communica-
tion by coherent states of biophotons.

A further more refined investigation of these oscillations shows that the
general solution of the intensity of delayed luminescence is

I(t) = a

⎡⎣∏
j

(1 + bjt)Pj

⎤⎦ sin

⎧⎨⎩
⎡⎣∑

j

γj ln(1 + νjt)

⎤⎦+ φ

⎫⎬⎭ .

The surprising fact about the phenomenon is not only the high degree of co-
herence and the non-molecular basis for the essence of life in terms of quantum
theory, but rather the high stability of frequency-locking and phase-locking
in biological systems. Figure 19.18 displays the ratio of the approximated
mathematical function to the measured values and its approximation by a
tangent function, which shows evidence of phase-locking of the oscillations
over at least a few minutes. A measurement with this accuracy is not possible
with artificial laser light or classical light.
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Crassula ovata leaf af ter He-Ne-Laser-
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Fig. 19.17. The oscillating residuum function of Fig. 19.16 can be approximated
by the function c/(1 + dt) exp[iγ ln(1 + νt) + φ], where all the parameters with the
exception of time t are constant

Consequently, the theory of biophoton emission refers not only to classical
electrodynamics and thermodynamics but also to quantum theory. Experi-
mental starting points for biophoton theory are:

1. the spectral intensity of biophoton emission and its temperature behavior
[15,21],

2. the photocount statistics [15],
3. the hyperbolic-like delayed luminescence relaxation [15],
4. hyperbolic oscillations around the relaxation curve [15,35],
5. coupling of the different modes [17],
6. the squeezing into both branches of minimum uncertainty wavepackets,

i.e., minimization of position and of momentum uncertainty [34],
7. the strong correlation with DNA dynamical states [22].

From a biological point of view, for instance, the mitotic figures [19], the
‘interference structure’ of biophoton emission from daphnia [26], the qualita-
tively different photon emission and reemission of tumor tissue and normal
tissue [15], and the correlation with growth and differentiation of cells [37]
will all become understandable under the umbrella of biophoton theory.

The mean value of the number n of photons of energy hν of a homogeneous
electromagnetic field with amplitude E0 can be estimated by equating the
energies nhν of the photons and ε0|E0|2V/8π of the field, where ε0 is the
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Fig. 19.18. The ratio of the approximated theoretical function of Fig. 19.17 to the
experimental values displays tangent-like functions with surprisingly stable phase
relations (see text). The continuous hyperbolic-like relaxation function plus the
oscillatory function are solutions of the coherent-state differential equation under
the boundary condition of energy conservation (homeostatic response)

dielectric constant and V the volume of the field. For one photon in the
optical range of say 3 eV, one gets a field amplitude on the order of 106 V/cm
over a volume of a cell of about 10−9 cm3. This means that in a situation
where the electric field amplitudes of the cavity modes stabilize the mitotic
figures in the range of 106 V/cm (corresponding to about the membrane field
components), only one photon in the optical range would suffice for this effect.
In other words, the low intensity of biophoton emission may well reflect its
biological functions in cells, such as stabilization of biomolecule migration,
transportation of angular momentum for rotating DNA during replication
or transcription, but also provision of the chemical reactivity of about 105

reactions per cell per second, always occurring at the right time and at the
right place.

The resonator model is one of the most powerful approaches for under-
standing biophoton emission. In fact, living systems may be looked upon as
the most stable form of matter through the storage of sunrays. To optimize
what we call life, the gradient between the high temperature of the sun and
the low one of the earth could be a necessary condition for life, particularly
the prolongation of the entropy increase of light into heat, which means op-
timization of the storage capacity for sunlight. Photosynthesis, the process
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providing the elementary food supply of plants, is a striking example. Let us
remember that here also there is a clear connection between the resonator
value of a cavity and its information content, pointing to a key understanding
of biological systems in terms of informational rather than energetic ‘engines’.
Furthermore, the resonators may develop nonlinear capacities just because
of their low photon emission. The deviation from the classical Q-value of the
typical resonator may then take the form

Q∗ =
Q

1− C
, (19.1)

where Q∗ is the resonator value of the quantum coherent resonator, Q is the
value of the classical ‘chaotic’ resonator, and C describes the ratio of the
quantum coherent energy distribution of the resonator to the totally avail-
able (chaotic + coherent) energy. This kind of resonator may develop rather
high storage time (Q∗/Q → ∞ for C → 1), but may be able to emit or to
remove photons actively for C > 1. It also describes Bose-condensation-type
phenomena, as Fröhlich has postulated. This can be seen in the following way.
Take the Bose–Einstein distribution of the spectral photon density (number
of photons per unit volume and wavelength λ) at temperature T :

N(λ) =
8π

λ4

1

exp
ε− µ

kT
− 1

, (19.2)

where ε = hc/λ is the photon energy, µ the chemical potential, and k Boltz-
mann’s constant. The chemical potential is defined as µ = −T (∂S/∂n)E,V ,
where dS is the entropy change through absorption of a photon. Figure 19.2
tells us that the absorption of a biophoton by the multiplier outside the
system (dn < 0) leads to an increase in the entropy of the system, and con-
sequently to a value µ > 0. In the case where there is no entropy loss by
thermal noise, we then have µ = ε. In the real case we may write

µ = ε− kT lnW , (19.3)

where W corresponds to the thermodynamical probability of the photons
under investigation. Inserting this in (19.2) results in

N(λ) =
8π

λ4

1
W − 1

. (19.4)

Now we see clearly the Bose condensation effect of a Fröhlich mode according
to W → 1 as well as the connection with the corresponding value C in (19.1).
C = 1 implies that the whole energy of the system, with the exception of
that of classical currents, belongs to a coherent field. In that case we get a
resonance-like absorption of photons in the mode W → 1. If we include the
possibility of ‘squeezed’ light, we may even describe removal of photons by
W < 1 or the extension of W , where the thermodynamical probability of
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the photon field corresponds to the vanishing chemical potential according
to (19.3):

lnW =
ε

kT
. (19.5)

In this case we once again have the spectral intensity of thermal radiation.
However, the average spectral intensity of biophoton emission is a further

indicator of its real nature. W turns out to be rather constant and indepen-
dent of the wavelength (see Fig. 19.4). For all biological systems, one finds
the order of magnitude of W in the band between 1017 and 1023, which is cer-
tainly far from thermal equilibrium. This constancy of W [or f = 1/(W −1)]
invites us to postulate that:

• living systems keep this rule W = constant over the whole spectral range
up to a limiting frequency ν0, corresponding to a cutoff wavelength λ0 =
c/ν0, where c is the velocity of light,

• W is adjusted in living systems in such a way that in a biological equi-
librium state – which is far from thermal equilibrium – the whole of the
available thermal spectral energy is equally distributed over all the avail-
able resonance modes of the biological system.

These statements (Fig. 19.4) show that the biological system is some kind
of information engine that transforms heat energy into the occupation of
coherent modes by use of food supply, i.e., sunrays. It optimizes its energy
content by adjusting it to the thermal boundary conditions of a heat bath,
probably by isoenthalpic processes. At the same time, this balance between
the thermal energy density and the nonthermal occupation of the modes
explains the continuity of biological evolution from equilibrium systems to
open ones.

Consequently, we enunciate

1
〈W 〉

∫
8π

λ4

hc

λ
dλ =

2π

〈W 〉
hc

λ4
0

=
∫

8π

λ4

hc

λ

1

exp
hc

kTλ
− 1

dλ =
8

15π5

(kT )4

(hc)3
,

(19.6)

where 〈W 〉 is the average of W over all the modes of the biological resonator
system, and the integration on the left-hand side runs from ∞ to λ0, but on
the right-hand side runs from ∞ to 0. Equation (19.6) provides the relation
between 〈W 〉 and the cutoff wavelength λ0, that is:

W =
15
4π4

(
hc

kTλ0

)4

. (19.7)

We know that the spectral biophoton intensity is on the order of a few up to
several hundred photons per cm2, and it is in the range from 200 to 800 nm,
corresponding to a 〈W 〉 value between, say, 1017 and 1023 (see Fig. 19.4).
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Insertion into (19.7) teaches us that the corresponding λ0 is on the order of a
few angstrom units. It fits into our images of the smallest size of a resonating
structure within a biological system, because the smallest possible resonators
are of this order of magnitude, i.e., the distances between neighboring base
pairs of the DNA. At the same time it once again supports the exciplex model
of biological evolution, which has already been discussed on several occasions.

A corresponding model concerns the adiabatic or isoenthalpic expansion of
a photon gas, initiated by sunrays in the smallest possible resonance cavities
of a biological system and expanding more and more to the bigger-sized
ones by the f (or W ) = const. rule, down to a final thermal degradation
in the ULF ranges, where, with increasing evolutionary states, the number
of resonator modes increases by shifting down also toward lower and lower
boundary frequencies. According to the Louisell noise theory, the extension
of resonating frequencies increasingly protects against thermal damping of a
coherent system.

A further important point about the thermodynamics of biophoton emis-
sion is that the entropy S of the open system with µ = ε− kT lnW becomes
independent of temperature T . In fact S may even increase to values that
are higher than that of thermal equilibrium systems, because the number
of modes increases as 1/λ3

0. A straightforward calculation shows that the
entropy is higher than the equiblibrium state as soon as

W >
15
4π4

(
hc

kTλ0

)3

. (19.8)

Comparison with (19.7) shows that this case is generally fulfilled as soon
as the system relaxes to its steady state. However, as soon as the modes
are coupled, the number of modes may decrease in such a way that the
entropy becomes much lower than that of the equilibrium state. Theoretically,
it may even reach the value 0. This important property of the system, to vary
between a state of higher entropy than the thermal equilibrium state and
one of lower entropy, explains both the stability and sensitivity of biological
systems that has been discussed elsewhere. At the same time, this result
provides a fundamental explanation of what we call homeostasis.

While the spatial pattern of the electromagnetic resonance modes is de-
termined by Maxwell’s equations, the dynamics is subject to quantum theory.
One should note that, even if the light in cells originated from a chaotic field,
the volume of a cell is always within the coherence volume of chaotic light.
The coherence length of chaotic light from electronic transitions of molecules
is the lifetime τ times the velocity of light and, even for allowed optical tran-
sitions, is much longer than the typical dimensions of a cell. This means that
it is practically impossible for photons to lose their phase information over
the distance of a biological cell. Consequently, it is impossible to determine
the molecular source of biophotons, because even in the case of chaotic states
(which may certainly contribute to the overall emission), the whole cell is
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subject to the coherence volume, and the localization of the origin of a pho-
ton is not possible within this range. In other words, biophotons are in any
case characterized by their relatively high degree of coherence within the vol-
ume of their activities. However, there are more than mere indications that
the origin of biophotons is a fully coherent field, following the equation

a|α〉 = α|α〉 , (19.9)

where a is the annihilation operator, and |α〉 and α are the coherent state
and its eigenvalue (field amplitude), respectively.

That biological systems are governed by quantum coherent states has
been shown by:

• the Poissonian photocount statistics of biophoton emission, which is a
necessary condition for a fully coherent field,

• the hyperbolic-like relaxation of delayed luminescence, which is a sufficient
condition for a fully coherent field under ergodic conditions.

The ergodic condition, on the other hand, has been proven by the Poissonian
distribution of photocounts even during relaxation, which holds only if the
field is ergodic. There is thus evidence that the biophoton field of a biological
system is a fully coherent field. In turn, the hyperbolic oscillations around the
delayed luminescence relaxation can be understood only in terms of couplings
of coherent states. No non-living system is known that displays hyperbolic
oscillations after light-induced re-emission.

However, as we now know, even squeezed states are possible. They may
be squeezed in the position space 〈q〉 or in the momentum space 〈p〉, always
satisfying the minimum uncertainty relation

∆p ∆q =
h

2
. (19.10)

In contrast to a coherent state, both ∆p and ∆q are variable in a squeezed
state, whereby, keeping (19.10) valid, either ∆p→ 0 and ∆q →∞ or ∆q → 0
and ∆p→∞.

Evidence has been shown by sub-Poissonian photocount statistics (for
∆p → 0, r > 0) in the case of an illuminated leaf and ultraweak photon
emission from dinoflagellates [34]. The ordinary bioluminescence of all lumi-
nescent biological systems is triggered in general by biophotons which are,
at least in the case of dinoflagellates, able to split into squeezed states with
squeeze factors r > 0 (∆p → 0) and r < 0 (∆q → 0). This happens at the
same time as the average photon number becomes smaller than 1. Further
experimental work on squeezed states is still on the research program of the
International Institute of Biophysics (IIB), Neuss.
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20 Quantum Theory of the Human Person

Henry P. Stapp

What is the future of quantum theory? Where will it go from here?
Quantum theory will go where it is most needed, which is into the effort

to understand ourselves, and in particular the connection of our minds to our
bodies.

Mind is the new frontier of science. The present century will be, for sci-
ence, a century for advancing our understanding of the mind. Quantum the-
ory is essential to progress here because classical physics leaves mind out: it
relegates consciousness to the role of passive witness to a parade of physi-
cal events that are completely specified by local mechanical laws. Quantum
theory, on the other hand, brings in the human participant in a subtle but
essential way, and the quantum laws then suffice to explain the causal effects
of our thoughts upon our actions.

The primary lesson taught by quantum theory is that the structure of
empirically observed macroscopic phenomena cannot be understood within
a conceptual framework in which the course of physical events is determined
by local mechanical laws of the kind specified by the laws of classical physics.
To deal with this incontrovertible fact the creators of quantum theory found
themselves compelled to bring our minds into basic physical theory in a way
less trivial than that of passive witnesses. This shift, though subtle in charac-
ter, is sufficient to allow quantum theory to provide a causal explanation of
the kinds of action of mind on brain that are now being observed in a grow-
ing number of neuro-psychological experiments conducted at major laborato-
ries and universities. (For references, and a discussion of these experiments,
see [10,11].)

The nature of the causal connection between our minds and brains will, for
many reasons, become increasingly a key focus of scientific research. The first
reason is funding. Research goes primarily where the money is. The nature
of the connection of our thoughts to our bodies is an important medical
question. In an era of shrinking budgets, major funding will probably be
channeled increasingly to research fields that are perceived to be vital to
human needs. Already one sixth of the US GNP goes to the health industry,
as contrasted to 2.8% for education and research. Thus there is a big pot from
which to fund research into the nature of the conscious human organism.

But perhaps even more important than the question of our mental and
physical health are cultural ramifications. We live immersed in a sea of ideas,
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and the impact of these ideas is, today, at least as important to human destiny
as our immediate physical conditions. This world of ideas is based directly
upon our conception of what we ourselves are, and how we are connected to
the forces that govern the universe.

The main contributors to the progress and development of these ideas
are science, philosophy, and religion. The voice of science is strong in the
construction of this intellectual milieu. But the message of science is blunted
by the fact that it has hitherto been based mainly on classical physics, which
proclaims us to be mechanical automata. That verdict conflicts with our deep
intuitive idea of what we are, and leads to an impoverishment of values: value
is reduced to the measure of mechanical well-being. Also, moral philosophy is
undermined by the self-contradictoriness of the idea of striving to improve a
future that was already mechanically determined before the earth was born.
These difficulties with the classical-physics-based idea of man in nature tend
to mute the voice of reason based on valid applicable science, and the more-
than-just-matter conception of man that it provides.

The quest for an understanding of the mind–brain connection is rapidly
becoming recognized as the most important and interesting task of science,
at least on the biological side. Antonio Damasio begins his lead article in the
recent special issue of Scientific American devoted to the mind–brain problem
with the words [6]:

At the start of the new millennium, it is apparent that one ques-
tion towers above all others in the life sciences: How does the set of
processes we call mind emerge from the activity of the organ we call
brain?

The article by Francis Crick and Christoph Koch begins with the similar
assessment [4]:

The overwhelming question in neurobiology today is the relationship
between the mind and the brain.

Some scientists [5] (p. 124) appear to believe that an adequate understanding
of the mind–brain connection can be based essentially on classical physics,
even though that theory is known to be unable to explain the observed macro-
scopic properties (e.g., electrical and thermal conductance, elasticity, etc.) of
systems that depend sensitively – as conscious brains certainly do – on the
behavior of their constituent atoms, molecules, electrons, and ions. This fatal
failing of classical physical theory was remedied by the founders of quantum
theory, who formulated their theory as a set of practical rules that specify
how knowledge-seeking human agents should go about their tasks of first
acquiring knowledge, and then representing that knowledge in a form that
permits them to form expectations about the outcomes of their subsequent
knowledge-seeking activities. The theory created by the founders is explicitly
about connections between human experiences. It is a conceptual structure
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that allows us to organize and make practical use of the knowledge we ac-
quire. This profound shift of perspective is proclaimed by statements of the
founders such as Heisenberg [7]:

The conception of the objective reality of the elementary particles
has thus evaporated not into the cloud of some obscure new reality
concept, but into the transparent clarity of a mathematics that repre-
sents no longer the behavior of the particle but rather our knowledge
of this behavior.

or Bohr [1] (p. 18):

In our description of nature the purpose is not to disclose the real
essence of phenomena but only to track down as far as possible the
multifold aspects of our experience.

The subtle shift, alluded to above, in the role of the human agent is empha-
sized in statements such as:

In the great drama of existence we ourselves are both actors and
spectators. ( [3], p. 15, [2], p. 81)

The freedom of experimentation, presupposed in classical physics, is
of course retained and corresponds to the free choice of experimental
arrangement for which the mathematical structure of the quantum
mechanical formalism offers the appropriate latitude. ( [2], p. 73)

To my mind there is no other alternative than to admit in this field of
experience, we are dealing with individual phenomena and that our
possibilities of handling the measuring instruments allow us to make
a choice between the different complementary types of phenomena
that we want to study. ( [2], p. 51)

20.1 Von Neumann’s Processes I and II

Quantum theory was rigorously formulated by John von Neumann [13]
(p. 418), who identified two distinct processes, Process I and Process II.

Process II is the quantum analog of the classical process of motion and,
like it, is governed by laws that are both local and deterministic. Process
II is constructed from its classical counterpart by ‘quantization’, which re-
places ‘numerical values’ by ‘actions’. The effect of this change is to smear
out the numerical values: it turns the physical state into a smeared out col-
lection of overlapping classically conceivable possibilities. (This feature is not
undone by the much-studied environmental decoherence effect, which effec-
tively wipes out certain off-diagonal interference terms of the density matrix
but does not restrict the evolution of the important diagonal elements.)
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Process II is, however, not the whole story. It generates a continuum of
overlapping physical possibilities that extend over a range of experientially
realizable possibilities. Thus, for example, if Process II were the only process
operating since the big bang then the physical structure representing the (cen-
ter point of the) moon would extend over a large portion of the sky, contrary
to the empirical facts. Some other process is needed to bring the physical
state S of an observed system into conformity with human experience.

To tie the physically described state S to human experience the founders
of quantum theory brought human agents into basic physical theory in a fun-
damental way. This was a radical move because the successes of the earlier
classical theory were due in large measure to the policy of keeping human
agents out. But in orthodox Copenhagen quantum theory the conscious ac-
tions of agents become crucial elements. In von Neumann’s rigorous formu-
lation of the theory, each such action is called a Process I intervention. This
act is a preparatory act that amounts to posing a specific question with a Yes
or No answer. (More complex cases can be built up by further decomposing
the No possibility, but the essential point can be explained by focusing on a
question with just two possible answers, Yes or No.)

A typical quantum question is: Will a Geiger counter set in some partic-
ular place be observed to fire at a time later than some specified time T1 but
earlier than some later specified time T2? The preparatory action of putting
this question to nature causes the state S to jump to a new state

S′ = PSP + (1− P )S(1− P ) .

The first term corresponds to the possibility that the feedback from nature
will be a human experience of seeing the Geiger counter fire during the spec-
ified interval, and the second term corresponds to the failure of that specified
experiential feedback to occur. These connections provide the critical corre-
spondence between the mathematical/physical description and the psycho-
logical/experiential one.

20.2 The Action of Mind upon Brain

This Process I action by the agent involves a selection of a projection operator
P from a continuum of alternative possibilities. This selection is, according
to the orthodox rules of quantum theory, not specified by the physical state
S of the system being examined or probed. This choice is taken to be a ‘free
choice’ on the part of the experimenter/agent, as indicated by the statements
by Bohr quoted earlier.

The reason why, in the original ‘Copenhagen’ version of quantum the-
ory, the agent’s choice must be regarded as ‘free’, in the specific sense that
this choice is not determined by any known law of nature, is that in the
Copenhagen formulation the experimenter stands outside the system that
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is being probed, and his choice about how to conduct his probing action is
considered to be up to him, not the system he is about to probe. In actual
empirical practice, it is the prerogative of the observing agent, not the system
being observed, to determine, from a continuum of possibilities, what kind
of information or knowledge will be gathered by the agent during his act of
observation. The system being observed does not make this choice.

Copenhagen quantum theory separates the dynamically unified physical
world into two systems, the physical system S that is being examined, and
the agent who is doing the examination. This latter system includes not only
the stream of consciousness of the agent, and his body and brain, but also his
measuring devices, which are regarded as extensions or parts of the agent.
This extended agent is described in the sort of language that we use “to
tell others what we have done and what we have learned” [2] (p. 3). This
conceptual arrangement works well in practice, but it means that the theory
cannot be viewed as a possible description of nature: it must be viewed as
merely a set of rules for calculating expectations pertaining to relationships
between human experiences.

Von Neumann’s approach is to treat the entire physical world, includ-
ing our own bodies and brains as belonging to the world described by the
quantum laws. This tack circumvents the need to separate the dynamically
unified physical world into two differently described subsystems. But it trans-
fers those functions that the Copenhagen interpretation ascribes to the agent
to what von Neumann calls the ‘abstract ego’ [13] (p. 421). This ‘abstract
ego’ is what is left of the agent after his devices, body, and brain have been
transferred to the physically described universe. This remainder, or residue,
is the agent’s stream of conscious experiences.

In von Neumann’s formulation the stream of consciousness of the agent
acts upon the brain of the agent. Thus in the Process 1 action

S −→ S′ = PSP + (1− P )S(1− P ) ,

the operator P acts non-trivially only on the brain of the agent. The choice
of the operator P is ascribed to the abstract ego of the agent, namely his
stream of consciousness. This provides, in principle, an opening within quan-
tum dynamics for a possible action of a conscious mind upon the associated
physically described brain.

20.3 Ideo-Motor Action

According to William James’s ideo-motor theory of the connection between
Volition and Action [8], willful action is associated with a prolongation of
attention to the idea of the intended action. Accordingly, let it be assumed
that each possible course of action that is conceivable to – and executable by
– an agent is represented in the brain of that agent by an associated pattern
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of brain activity that if held in place for a sufficiently long period of time
will tend to cause that action to occur. I call this pattern a ‘template for
action’. It is the ‘neural correlate’ of the idea of that action. This pattern of
brain activity is specified by a projection operator P that singles out from
the morass of possible states of the brain of the agent those in which the
associated template for action is activated. This projection operator P defines
a possible Process 1 action. But the choices of which Process 1 interventions
will occur are, according to quantum theory, ‘free choices’ made by the agents.

The key question then becomes: Can an agent’s freedom to choose which
Process I interventions occur have any effect on his bodily action?

The answer in von Neumann quantum theory is Yes! The agent’s choices
of Process 1 interventions can exert a huge effect on the physical activity of
his brain, and this can have in turn a large effect on his bodily behavior. The
simplest way to achieve such a result is via the quantum Zeno effect.

20.4 The Quantum Zeno Effect

Suppose S describes some slowly changing degrees of freedom of the brain.
Suppose a sequence of ‘freely chosen’ Process I events consists of a rapid
repetition of events with the same P . Then the laws of quantum theory entail
that S will be trapped in the subspace of states of the form PSP if the original
state has this form. Transitions to the other outcome (I −P )S(I −P ) of the
Process 1 interventions are suppressed by virtue of the quadratic dependence
upon the short time interval t between interventions of

(I − P ) exp(−iHt)(PSP ) exp(iHt)(I − P ) = O(t2) .

That is, suppose a Process 1 event, followed by Nature’s choice of an outcome,
lands you in the Yes state PSP . And suppose, your mental effort, within the
range of ‘free choices’ available to you, can activate a rapid repetition of
Process I events all associated with the same P . If the repetition rate is
sufficiently fast then, due to the quadratic dependence on the time interval
t between successive Process 1 events, there will be almost no transitions to
the No states of the form (I − P )S(I − P ) over a long peiod of time, even
if strong forces would tend to quickly move one out of the space specified by
PSP in the absence of the rapid sequence of process 1 interventions.

One verifies the quadratic dependence on t by observing that a replace-
ment of either one of the two exponentials by the zeroth order term ‘unity’
gives a null contribution to the transition probability, due to the constraint

P (1− P ) = (1− P )P = 0 ,

which is imposed by von Neumann’s rules on the operators P .
The lowest order term is therefore of second order in t. This entails that if

by means of his ‘free choices’ an agent can increase the rapidity of the Process
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1 interventions to the point of activating the quantum Zeno effect, thereby
holding in place some template for action, then the agent can, by exercising
his ‘free choice’, influence his bodily actions.

This scenario is precisely in line with James’s description of the effect of
will:

The essential achievement of the will, in short, when it is most ‘vol-
untary’, is to attend to a difficult object and hold it fast before the
mind. [8]

Everywhere, then, the function of effort is the same: to keep affirming
and adopting the thought which, if left to itself would slip away. [8]

This explanation of the effect of mind on brain is strictly quantum mechani-
cal. The classical-physics approximation eliminates the latitude provided by
the uncertainty principle within which the play of free choice operates. Thus
it closes the door opened by quantum theory to the possibility of a genuine
causal influence of our thoughts, ideas, and feelings upon our physical actions.

William James clearly recognized the difficulty within classical physics of
allowing mental effort to make a physical difference. He apparently under-
stood what could then hardly be uttered by a man of science, namely that
classical physics must be wrong. The prescient final words of his book [9] are:

. . . understand how great is the darkness in which we grope, and never
forget that the natural-science assumptions with which we started are
provisional and revisable things.
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21 Roundtable Discussion III:
Information and Observation

Smolin: When I hear the word ‘information’, I think of Shannon. Informa-
tion is then defined in a particular context, which is a channel, a sender and
a receiver. When information is used in the context of ‘is the world determin-
istic or not?’, I get very confused. This overuse of the word ‘information’, to
the point that somehow the laws of physics become information processing
and so forth – I just don’t understand. I think it’s a misuse and I’d like to
discuss it.

Rovelli: I feel challenged by that because I myself have been talking about
information. The information I talked about is exactly the definition of Shan-
non, not the popular one, but the one in his book,1 where you have two sys-
tems with many states, and there is a possible state of the couple but there
is only a restricted subset of all joint states. Information is simply the way of
counting the allowed joint possible states. The fact that there is a common
allowed state tells you that if you know something about one system you also
know something about the other one. This is exactly what you need in com-
munication theory when you have a channel, a receiver and a transmitter. So
I have two systems. If there is a quantum correlation of the two, I can say
that, if this system is up, the other is down, and vice versa. This is what I
mean by information, period.

The question is to Gerard [’t Hooft] about what he means by information.
This morning you said that when there is a black hole there is information
proportionate to the area. And then you said that this is very surprising be-
cause we are used to information being proportionate to the volume – and
out of that comes a long story. I know from the geometry of the Earth that
there are horizons, and that I can’t get visual information from what’s be-
hind the horizons because of the geometry of the Earth. I know from general
relativity that there are horizons like the horizon that bounds the black hole
such that anybody outside can’t get information about what’s going on in-
side. In all these situations, particularly in GR, there is a precise distinction
between information available to me and the total information including the
one available on other side of the horizon. What is peculiar about black holes
1 C.E. Shannon: The Mathematical Theory of Communication (University of Illi-

nois Press, 1949).
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is of course that nobody outside is going to get any information about what
is inside. But if an observer goes inside she will have information about that.
So there are two distinct notions of information. One is the information in a
region of space, and the other one is information that I can get staying out-
side, from that region of space. At some point you [’t Hooft] said you were
surprised that the information in a certain region is proportionate to the area,
not the volume. But are you talking about the information available from the
inside, or are you talking about the information available to anybody else?
Because if you are talking about the information available from the outside,
this does not imply that the number of degrees of freedom accessible from
inside should be bounded by the area. If, on the other hand, you are talking
about the information that anybody could have by going inside, I don’t un-
derstand the consequences of what you said.

’t Hooft: I think there are two questions here. One question, of principle,
is the one that Lee [Smolin] also raised: What is information? The whole
universe is only in one state, and will always be in one state. So you can
say there is only one bit of information in the whole universe, and this is
clearly wrong. The reason why it’s wrong is that what we are doing when
we are measuring is to consider all sorts of alternative outcomes which aren’t
realized by nature. So when we set up a measurement, or when we want
to say something about a system, we first make a list of all the alternative
possibilities, so the universe could be in a state that we are in some other
town, or something like that. These are all alternatives, so we write down a
complete list of alternatives, then we make a measurement and say that of all
the alternatives this one or that is realized. So if you talk about information in
the universe, you ask: What is a reasonable list of alternatives? And how big
is that list? And with a black hole you ask: How big is the list of reasonable
alternative states that the black hole can be in? The answer is: That list is
the number which precisely fits on the horizon if you are allowed to write one
bit per surface element.

By the way, that is the information which can be re-assessed by an out-
side observer. It’s not information that disappeared behind the horizon, but
information that comes back to him. And that’s absolutely essential and im-
portant.

The best way to describe this would be to write down a model of the black
hole, which is a lousy and stupid model, but it works as far as information
goes. You build a brick wall outside the horizon, about one Planck length or
a couple of Planck lengths outside the horizon. Then you give the black hole
an atmosphere, such that the particles which went all the way outside the
black hole are just Hawking radiation. It turns out that if you place the brick
wall a couple of Planck lengths outside the horizon, then the atmosphere of
the black hole, these Hawking particles, precisely represent that partial in-
formation. Then you can ask: How many different ways can this atmosphere
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of the black hole look? Where can all these particles be, given the constraints
of quantum mechanics? And you find that the black hole can be in a number
of states. These quantum states can be counted. It is the same number of
alternative states I mentioned earlier, that you can count.

Rovelli: Surely the number of possible states inside may very well be pro-
portionate to the volume, not to the area?

’t Hooft: Yes, but those states are irretrievable for the outside observer. I’m
talking about everything you can see about the black hole from the outside.
What’s inside cannot be recovered.

Rovelli: But what about your holographic hypothesis?

’t Hooft: The whole idea is as follows. One would have thought – now, this
may be wrong – that the properties of the black hole horizon can be retrieved
by doing a general coordinate transformation, saying that the horizon is just
a region of regular spacetime. All you have to do is the Rindler space trans-
formation, or something like that, near the horizon, and then you can make
a mapping onto the physics of ordinary flat space. So, if you want to know
what the black hole does, all you have to do is physics of flat space which
we thought we understood. This is a big mistake. We don’t understand the
physics of flat space at all! This is what comes out of this argument: that
we don’t actually know the physics of flat space! It’s because we haven’t un-
derstood what happens at Planckian distance regimes. And that’s what the
answer to this exercise is. But I thought we should have understood what
happens in flat space, and then, if you know that, you can deduce the prop-
erties of the black hole from the properties of flat space. If that were so, the
total number of alternative states a black hole could be in should be equal to
the total number of alternative states that you have in flat space – that is, if
you believe that there is a one-to-one mapping. Well, somewhere there is a
mistake in all this, because this mapping doesn’t work, since you would think
that in flat space the total number of alternative states is proportionate to
the volume. But it’s not. If it were a black hole, it would be just the surface.
So somewhere along the line a mistake has been made. It’s very important to
ask where the mistake was made – how come, how can we cure it, and how
can we get a superior theory?

Butterfield: When counting states, I would at first think that one is count-
ing the dimensionality of a Hilbert space, since any one of these spaces has
continuously many states. But then I’m worried when you say that the num-
ber would be expected to scale with the volume, since we know that L2(R2)
or L2(R3) are both of denumerable dimension. So what exactly is the count-
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ing here?

’t Hooft: The counting goes by indirect argument, and that is the strange
thing about the whole situation. I wish I had a direct answer to the question,
because you are perfectly right: L2(R2) has an infinite number of states, so
how come it’s strictly finite? So the only possible answer is that somehow
there is a cutoff. I am not working with L2(R2), I’m working with functions
defined on a lattice of spacetime, something like that. And on top of that
there is some kind of an exclusion principle that says that no two bits are
allowed to sit on the same spot. So here we have the exclusion principle.
You can only work with a fermionic theory on a lattice. It must be like this
because I got this answer of one bit per Planckian surface element.

Smolin: I have another question about the holographic principle. There are
two views which you might call the weak version and the strong version of
the holographic principle, and I’m curious which one is yours.

The weak version is: Given a spacelike surface somewhere in spacetime
– I’m taking on board what you said that they should not be just at the
horizon of a black hole but anywhere in spacetime – there is a limitation
to the amount of information that might be traversing that surface from its
causal past to its causal future, which is given by one bit of information per
every four Planck areas.

The strong version is: If I have a closed surface of arbitrary size, there is
a limit to the amount of information that might ever be measured even by
someone going into the interior of the surface, which is proportionate to the
area of the surface.

I am trying to distinguish between the two because one can construct in
the cosmological context counterexamples to the second version. For example,
in an inflationary universe, you can have a region that grows up and inflates
and then re-heats and has an entropy on the interior much larger than the
bound that is proposed.

’t Hooft: That has to do with my previous remark to Carlo [Rovelli], that
you have to make a list of alternatives and you can make the list as long as you
want. But most of these alternatives are fundamentally impossible. So you
can just wipe them out. There is some freedom there. That is important in the
definition of information which also comes in from all sorts of definitions of
entropy in thermodynamics and things like that. If you ask: What is entropy?,
you first have to say: “I’m looking at a sort of substance”, for example, “I
want to know the entropy of the water in this glass”, but you have to ask
what is the total number of states that the water can be in. And you have to
ask what’s the total number of states that water can take such that it still
looks like water. I don’t want it to look like alcohol or gasoline or whatever,
because that is clearly something I can distinguish. It’s not that. But if I say
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I’m counting all states which this could be in, without making any change
in experience or any change in its coarse-grained physical properties, then
that is the entropy. So I think that if you use that definition for a gross
surface, by saying: “What is the reasonable upper limit on the total number
of states that you can choose from to describe the inside?”, then you get the
Beckenstein bound.

In cosmology, you sometimes talk about the surfaces that could be either
the inside or the outside. And of course, outside surfaces have far more states
than inside surfaces. And if you have a closed universe, you don’t know what’s
inside and what’s outside, so you get into this mystery, when you have to ask:
On which side of the surface are the states that I am counting? I do not have
the answer, but one could imagine the following. The inside observer has only
a limited memory, so he can only imagine a limited number of states for the
outside observer, for the outside world. Even if the outside world is richer
than the inside observer can imagine. And then, this total list of alternatives
is limited for that reason.

I say this because I suspect that the data at the surface reflect the ex-
pression 〈out|in〉, where the bras 〈out| stand for the states outside, and the
kets |in〉 for the states inside, and this matrix must be unitary.

Saunders: I’d like to ask Carlo [Rovelli]: Suppose that relative to Carlo
some experimental outcome is ‘red’ while, relative to Anton [Zeilinger], Carlo
and the apparatus are in superposition at the same time. So both these two
statements are made at the same time. I’d like to understand how to reconcile
these two statements with one another.

Rovelli: My main suggestion is to forbid ourselves to use the point of view
of God. Do not compare two different observers, unless you are, for instance,
a third observer who interacts with the two. In order to make this compari-
son you have to have a quantum mechanical interaction. So, very simply, the
answer is like that of special relativity: I am telling you that, with respect to
this observer, this comes first and this comes second, whereas, with respect
to another observer, the order is the opposite. Intuitively one might think
that this cannot be. But really there is no contradiction.

Saunders: Let me push this a little bit further. If Anton is correct in at-
tributing the superposition to this combined system for himself, it seems to
me that it is also the case that if Anton subsequently opens the box and
makes a measurement he should find on some occasions that when he opens
the box he finds not ‘Carlo seeing red’ but ‘Carlo seeing blue’.

Rovelli: Yes, for himself!
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Saunders: That’s right. Although relative to Carlo he is seeing red.

Rovelli: Not ‘although’ – he is seeing red, period! Now if you want to com-
pare the two, you need some quantum communication for comparing the two.

Saunders: I’m trying to understand how: Anton has a Carlo who is seeing
blue, whereas Carlo himself sees red?!

Rovelli: In the same sense in which two things can be different with respect
to two different reference frames. These are not facts of Nature, ‘seeing red’
or ‘seeing blue’. ‘Seeing red’ is like ‘being red’ – it’s a statement about a
physical system, which is only true when referred to some observer.

Saunders: I have been careful to refer it to observers. Relative to Anton
there is a Carlo seeing blue, but relative to Carlo there is a red outcome. I
still don’t know how to understand this unless there are two different Carlos!

Rovelli: What I’m saying is that quantum mechanics is not about a factual
state of affairs of the world.

Smolin: The dynamics, and/or the principle that Carlo calls the von Neu-
mann principle of consistency,2 must ensure that there will never be a case
where Carlo will see an eigenstate of red for his experiment and Anton will
see an eigenstate which is orthogonal to red.

Saunders: When Carlo sees red here at 12 o’clock, Anton, from the outside,
correctly attributes to him at 12 o’clock a state of superposition. You are
saying that there will never be a case that when Anton opens the box he will
find Carlo seeing blue?

Smolin: Yes.

Saunders: In that case I don’t understand how this attribution of a super-
position can be correct.

Rovelli: What I’m saying is that what we cannot speak about we must pass
over in silence: if you take one observer and you follow all the information
that she has, all the statements that she can verify, for all the time you want
and with all the interactions you want, you get complete consistency. If you
don’t forget about that, and you take another observer, and you follow all
the information that she has, and all the statements that she can make, you
get complete consistency. Furthermore, I’m saying that if the two observers
2 C. Rovelli: Relational quantum mechanics, Intl. J. of Theoret. Phys. 35, 1637

(1996).
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communicate, this doesn’t disturb in any way the consistency of one or the
other: the rest is silence.

Unidentified: Time for dinner!
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